

NIMCET - MCA

MOCK TEST PAPER

- Attempt all the questions
- This paper consists of 120 objective type questions.
- Each of these question carries 3 marks. 1 negative mark for each wrong answer.
- Pattern of questions : MCQs
- Total marks :360
- Duration of test : 3 Hours

DNA
 Network

VPM CLASSES

For IIT-JAM, JNU, GATE, NET, NIMCET and Other Entrance Exams
1-C-8, Sheela Chowdhary Road, Talwandi, Kota (Raj.) Tel No. 0744-2429714
Web Site www.vpmclasses.com E-mail-vpmclasses@yahoo.com

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

MATHEMATICS

1. The function $f(x)=\left\{\begin{array}{l}x^{3}-1 ; 1<x<\infty \\ x-1 ;-\infty<x \leq 1, \text { at } x=1 \text { is }\end{array}\right.$
(A) Continuous and differentiable
(B) continuous and not differentiable
(C) discontinuous and differentiable
(D) discontinuous and not differentiable
2. The value of $\int e^{x} \sec ^{2}\left(e^{x}\right) d x$ is
(A) $\tan \left(e^{x}\right)+k$
(B) $\tan \left(e^{x}\right) \cdot e+k$
(C) $e^{x} \tan x+k$
(D) $\frac{\tan \left(e^{x}\right)}{e^{x}}+k$
3. $\int x \sqrt{2 x+3} d x=$
(A) $\frac{x}{3}(2 x+3)^{3 / 2}-\frac{1}{15}(2 x+3)^{5 / 2}+c$
(B) $\frac{x}{3}(2 x+3)^{3 / 2}+\frac{1}{15}(2 x+3)^{5 / 2}+c$
(C) $\frac{x}{2}(2 x+3)^{3 / 2}+\frac{1}{6}(2 x+3)^{5 / 2}+c$
(D) None of these

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
4. For all real x, the minimum value of $\frac{1-x+x^{2}}{1+x+x^{2}}$ is
(A) 0
(B) $\frac{1}{3}$
(C) 1
(D) 3 .
5. The max value of the function $\sin x(1+\cos x)$ is
(A) 3
(B) $3 \sqrt{3} / 4$
(C) 4
(D) $3 \sqrt{3}$
6. The solution of differential equation $x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}$ is
(A) $\tan ^{-1}\left(\frac{y}{x}\right)=\log x+c$
(B) $\tan ^{-1}\left(\frac{x}{y}\right)=\log x+c$
(C) $\tan ^{-1}\left(\frac{x}{y}\right)=\log y+c$
(D) $\tan ^{-1}\left(\frac{y}{x}\right)=$ logy $+c$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

7. Solution of equation $x \frac{d y}{d x}-2 y=x^{2}+\operatorname{Sin}\left(\frac{1}{x^{2}}\right)$ is
(A) $\frac{y}{x^{2}}=\log x+\frac{1}{2} \sin \frac{1}{x^{2}}+c$
(B) $\frac{y}{x^{2}}=\log y+\frac{1}{2} \operatorname{Cos} \frac{1}{x^{2}}+C$
(C) $\frac{y}{x^{2}}=\log x+\frac{1}{2} \operatorname{Cos} \frac{1}{x^{2}}+c$
(D) None of these
8. IF of equation $\operatorname{Sin} y \frac{d y}{d x}=\operatorname{Cos} y(1-x \operatorname{Cos} y)$ is
(A) x
(B) $\log x$
(C) e^{-x}
(D) None of these
9. By false pesitioning the second approximation of a root of equation $f(x)=0$ is
(where x_{0}, x_{1} are initial and first approximation respectively)
(A) $x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$
(B) $\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(C) $\frac{x_{0} f\left(x_{0}\right)-x_{1} f\left(x_{1}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$
(D) $x_{1} \frac{f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$
10. If by Simpson's rule

$$
\int_{0}^{1} \frac{1}{1+x^{2}} d x=\frac{1}{12}[3.1+4(a+b)]
$$

when the interval $[0,1]$ is divided into 4 sub intervals and a and b are the values of $\frac{1}{1+x^{2}}$ at two of its division points then
(A) $a=\frac{1}{1.0625}, b=\frac{1}{1.25}$
(B) $\mathrm{a}=\frac{1}{1.0625}, \mathrm{~b}=\frac{1}{1.5625}$
(C) $a=\frac{1}{1.25}, b=1$
(D) $a=\frac{1}{1.5625}, b=\frac{1}{1.25}$
11. If $A=\left[\begin{array}{ll}x & \text { and } A^{2} \text { is an identity matrix, then } x= \\ 1 & 0\end{array}\right]$
(A) 1
(B)
(C) 3
(D) 0 .

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

12. If a matrix A is such that $4 A^{3}+2 A^{2}+7 A+I=O$, then A^{-1} equals
(A) $\left(4 A^{2}+2 A+7 I\right)$
(B) $-\left(4 A^{2}+2 A+7 I\right)$
(C) $-\left(4 A^{2}-2 A+7 I\right)$
(D) $\left(4 \mathrm{~A}^{2}+2 \mathrm{~A}-7 \mathrm{I}\right)$
13. The maximum value of $P=x+3 y$, such that $2 x+y \leq 20, x+2 y \leq 20, x \geq 0, y \geq 0$ is
(A) 10
(B) 60
(C) 30
(D) none of these
14. A unit vector in $x y$-plane that makes an angle 45° with the vector ($\mathbf{i}+\mathbf{j}$) and an angle of 60° with the vector $(3 \mathrm{i}-4 \mathrm{j})$ is
(A) \mathbf{i}
(B) $\frac{1}{\sqrt{2}}(\mathbf{i}-\mathbf{j})$
(C)

(D) None of these
15. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are vectors such that $[\mathbf{a} \mathbf{b} \mathbf{c}]=4$, then $[\mathbf{a} \times \mathbf{b} \mathbf{b} \times \mathbf{c} \mathbf{c} \times \mathbf{a}]=$
(A) 16
(B) 64

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) 4
(D) 8
16. Minimize $z=\sum_{i=1}^{n} \sum_{i=1}^{n} c_{i j} x_{i j}$
subject to $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \leq \mathrm{a}_{\mathrm{i}}, \mathrm{i}=1, \ldots \ldots ., \mathrm{m}$

$$
\sum_{i=1}^{n} x_{i j} \leq b_{j}, j=2, \ldots \ldots, n
$$

is a LPP with number of constraints
(A) $m+n$
(B) $m-n$
(C) mn
(D) $\frac{\mathrm{m}}{\mathrm{n}}$
17. If $\mathbf{a}=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}, \mathbf{b}=2 \mathbf{i}-4 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{c}=-\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$, then the magnitude of $2 \mathbf{a}-$ $3 b-4 c$ is
(A) 15
(B)
(C) 281
(D) 23
18. The equation of a line passing through (1,2) and perpendicular to $3 x+4 y+5=0$ is
(A) $4 x-3 y+2=0$
(B) $4 x-3 y+3=0$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) $4 x-3 y+4=0$
(D) $4 x+3 y-2=0$.
19. The condition that the line $x \cos \alpha+y \sin \alpha=P$ may touch the circle $x^{2}+y^{2}=a^{2}$ is
(A) $p=a \cos \alpha$
(B) $p=a \tan \alpha$
(C) $p^{2}=a^{2}$
(D) $p \sin \alpha=a$
20. The equation of a circle that intersects the circle $x^{2}+y^{2}+14 x+6 y+2=0$ orthogonally and whose centre is $(0,2)$ is
(A) $x^{2}+y^{2}-4 y-6=0$
(B) $x^{2}+y^{2}+4 y-14=0$
(C) $x^{2}+y^{2}+4 y+14=0$
(D) $x^{2}+y^{2}-4 y-14=0$
21. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$, where $\theta+\phi=\frac{\pi}{2}$, be two points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

If (h, k) is the point of intersection of the normals at P and Q, then k is equal to
(A) $\frac{a^{2}+b^{2}}{a}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) $-\left(\frac{a^{2}+b^{2}}{a}\right)$
(C) $\frac{a^{2}+b^{2}}{b}$
(D) $-\left(\frac{a^{2}+b^{2}}{b}\right)$
22. The number of terms of The A.P. $3,7,11,15 \ldots$ to be taken so that the sum is 406 is
(A) 5
(B) 10
(C) 12
(D) 14
23. The sum $1(1!)+2(2!)+3(3!)+\ldots+n(n!)$ equals
(A) $3(n!)+n-3$
(B) $(\mathrm{n}+1)$! $-(\mathrm{n}-1)$!
(C) $(\mathrm{n}+1)!-1$
(D) $2(n!)-2 n-1$
24. If p, q, r are in one geometric progression and a, b, c in another geometric progression, then cp, bq, ar are in
(A) A.P.
(B) HP
(C) G.P.
(D) None of these

[^0]25. $1+\frac{3}{2!}+\frac{6}{3!}+\frac{10}{4!}+\ldots \infty=$
(A) $\frac{e}{2}$
(B) 2 e
(C) 3 e
(D) $\frac{3}{2} e$
26. Using initial approximation $x_{0}=-1$ zero $x=-2$ of polynomial $P(x)=x^{5}+5 x^{4}-40 x^{2}-$ $80 x-48$ is obtained by Newton's method

Determine its order of convergence
(A) 1
(B) 2
(C) 3
(D) none
27. If all roots of the equation $x^{3}-3 x+k=0$ are real, then the range of values of k is
(A) $(-2,2)$
(B) $(-\neq,-2) \cup(2, \neq)$
(C) $(2, ¥)$
(D) None of these

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

28. Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{H}$ be a group homomorphism from a group G into a group H with kernel K , If the order of G, H and K are 75,45 and 15 respectively, then the order of the image $f(G)$ is:
(A) 3
(B) 5
(C) 15
(D) 45
29. In a sample survey, the chances of young professionals courses MBA. degree MCA degree or both are $0.86,0.35$ and 0.29 respectively. What is the probability of owning either or both degree?
(A) 0.82
(B) 0.92
(C) 0.08
(D) 0.18
30. If A and A^{\prime} are complementary events in a sample space S, then-
(A) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{A})=0$
(B)
(C) $P(A)+P\left(A^{\prime}\right)=1$
(D) $P(A)-P\left(A^{\prime}\right)=1$
31. Out of n pairs of shoes $2 r(<n)$ shoes are chosen at random. The probability that not a single pair is chosen is :

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) $\frac{{ }^{n} C_{2 r}}{{ }^{2 n} C_{2 r}}$
(B) ${ }^{{ }^{n} C_{2 r} \times 2^{2 r}}{ }^{2 n} C_{2 r}$
(C) $\frac{{ }^{n} C_{2 r} \times 2^{r}}{{ }^{2 n} C_{2 r}}$
(D) $\frac{{ }^{n} C_{2 r}}{{ }^{2 n} C_{r}}$.
32. If $x \sin \theta=y \sin \left(0+\frac{2 \pi}{3}\right)=z \sin \left(0+\frac{4 \pi}{3}\right)$, then $x y+z x+y z$ is equal to.....
(A) 1
(B) $1 / 2$
(C) 0
(D) None of these
33. If $\tan \alpha=p$ and $\tan (\beta=q$, then $\cos (\alpha+\beta)$ is equal to
(A)

(B)

$$
\text { B) } \frac{1-p q}{\sqrt{1+p^{2} \sqrt{1+q^{2}}}}
$$

(C)
$\frac{p q}{\sqrt{1+p^{2}} \sqrt{1+q^{2}}}$
(D) None of these.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
34. If $\tan \theta=\frac{a}{b}$, then $\frac{\sin \theta}{\cos ^{8} \theta}+\frac{\cos \theta}{\sin ^{8} \theta}=$
(A) $\pm \frac{\left(a^{2}+b^{2}\right)^{4}}{\sqrt{a^{2}+b^{2}}}\left(\frac{a}{b^{8}}+\frac{b}{a^{8}}\right)$
(B) $\pm \frac{\left(a^{2}+b^{2}\right)^{4}}{\sqrt{a^{2}+b^{2}}}\left(\frac{a}{b^{8}}-\frac{b}{a^{8}}\right)$
(C) $\pm \frac{\left(a^{2}-b^{2}\right)^{4}}{\sqrt{a^{2}+b^{2}}}\left(\frac{a}{b^{8}}+\frac{b}{a^{8}}\right)$
(D) $\pm \frac{\left(a^{2}-b^{2}\right)^{4}}{\sqrt{a^{2}+b^{2}}}\left(\frac{a}{b^{8}}-\frac{b}{a^{8}}\right)$.
35. The general value of q which satisfies the equations $\sin \theta=-\frac{1}{2}$ and $\tan \theta=-\frac{1}{\sqrt{3}}$ is
(A) $2 n \pi \pm \frac{\pi}{6}$
(B) $\pi+\frac{\pi}{6}$
(C) $n \pi+(-1)^{n} \frac{\pi}{6}$
(D)

36. The volume of real part of $\frac{(1+i)^{2}}{3-i}$ is
(A) $\frac{1}{5}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(B) $\frac{1}{3}$
(C) $-\frac{1}{3}$
(D) $-\frac{1}{5}$.
37. $R\left(z^{2}\right)=1$ is represented by
(A) The parabola $x^{2}+y^{2}=1$
(B) The hyperbola $x^{2}-y^{2}=1$
(C) Parabola or a circle
(D) All the above
38. If w is an imaginary root of unity, then the value of $\sin \left[\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right]$ is
(A) $-\sqrt{3} / 2$
(B) $-1 / \sqrt{2}$
(C) $1 / \sqrt{2}$
(D) $\sqrt{3}$
39. The value of
$\sqrt{20+\sqrt{20}+\sqrt{20}+\ldots}$
(A) 5
(B) 4

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(C) 3
(D) 2.
40. If one root of the quadratic equation $a x^{2}+b x+c=0$ is equal to the nth power of the other root, then value of $\left(\mathrm{ac}^{\mathrm{n}}\right)^{\frac{1}{n+1}}+\left(\mathrm{a}^{\mathrm{n}} \mathrm{c}^{\frac{1}{n+1}}=\right.$
(A) b
(B) -b
(C) $b^{\frac{1}{n+1}}$
(D) $-b^{\frac{1}{n+1}}$
41. If x is real and $k=\frac{x^{2}-x+1}{x^{2}+x+1}$, then
(A) $\frac{1}{3} \leq k \leq 3$
(B) $k \leq 5$
(C) $\mathrm{k} \leq 0$
(D) None of these
42. If $x^{2}-h x-21=0, x^{2}-3 h x+35=0(h>0)$ have one common root, then the value of h is
(A) 1
(B) 2
(C) 3
(D) 4

[^1]UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
43. If the number of terms in the expansion of $(x+2 y+3 z)^{n}$ is 45 , then $n=$
(A) 7
(B) 8
(C) 9
(D) 10 .
44. If in the expansion of $\left[\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right]^{n}$ the ratio of $7^{\text {th }}$ term from the beginning and $7^{\text {th }}$ term from the end is $\frac{1}{6}$, then $n=$
(A) 7
(B) 8
(C) 9
(D) 10
45. In the expansion of $(1-x)$ first four terms are :
(A) $1-\frac{3}{2} x+\frac{3}{8} x^{2}-\frac{1}{16} x$
(B)

(C) $1-\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{16} x^{3}$
(D) $1+\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{16} x^{3}$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
46. In how may ways can 5 boys and 5 girls be seated in a circle so that no two boys are together?
(A) $5!\times 5$!
(B) $4!\times 5$!
(C) $\frac{5!5!}{2}$
(D) $\frac{4!5!}{2}$.
47. $\sum_{r=0}^{m+r} C_{n}$ is equal to
(A) ${ }^{n+m+1} C_{n+1}$
(B) ${ }^{n+m+2} C_{n}$
(C) ${ }^{n+m+3} C_{n-1}$
(D) None of these
48. The sides $A B, B C, C A$ of a triangle $A B C$ have respectively 3,4 and 5 points lying on them. The number of trianglés that can be constructed using these points as vertices is
(A) 205
(B) 220
(C) 210
(D) None of these

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
49. If $X=\{0,1,3,5\} Y=\{1,2,4,7\}$ and $Z=\{1,2,3,5,8\}$ then $(X \cap Y) \cup Z$ equal to-
(A) $\{0,1,2,4,7,5,8\}$
(B) $\{1,2,3,4,5,8\}$
(C) $\{1,2,3,5,8\}$
(D) $\{0,1,2,3,5,7,8\}$
50. $1+\frac{\log _{e} x}{1!}+\frac{\left(\log _{e} x\right)^{2}}{2!}+\frac{\left(\log _{e} x\right)^{3}}{3!}+\ldots \infty=$
(A) $\log _{e} x$
(B) x
(C) x^{-1}
(D) $-\log _{e}(1+x)$

REASONING

51. Three friends Rahul, Mukesh and Anil contribute sums of Rs.75000, Rs. 150000 and Rs 300000 respectively, towards a venture and agree to share the profits of the venture in such a way that the rate of return which each receives is in proportion to the amount of his contribution. If the profits for a year amount to Rs. 94500, then how much will each receive?
(A) Rs. 3500 , Rs. 19000 , Rs. 72000
(B) Rs 4000 , Rs. 18500 , Rs. 72000
(C) Rs. 4500 , Rs. 18000 , Rs .72000
(D) Rs. 7000, Rs. 17500 , Rs 70000
52. 4 men earn as much in a day as 7 women and 1 women earns as much as 2 boys. If 6 men, 10 women and 14 boys work together for 8 days to earn Rs. 2200, then what will be the earnings of 8 men and 6 women working together for 10 days ?

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) Rs. 2520
(B) Rs. 2000
(C) Rs. 2750
(D) Rs. 1600
53. A 10 hectare field is reaped by 2 men, 3 women and 4 boys in 10 days. If a man, a woman and a boy work in the ratio 5:4:2, then the time that 6 men, 4 women and 7 boys take to reap a 16 hectare field is
(A) 5 days
(B) 6 days
(C) 7 days
(D) 8 days

Directions : For the following question, fou options are given. Choose the correct option.
54. What is the weight and the percentage of zinc in the zinc copper alloy, given with 3 kg of pure zinc contains 90 percent of zinc and with 2 kg of another 90% zinc alloy contains 84% of zine?
(A) $2.4 \mathrm{~kg}, 80 \%$
(B) $1.4 \mathrm{~kg} .88 \%$
(C) $3.4 \mathrm{~kg}, 90 \%$
(D) $7.4 \mathrm{~kg}, 18 \%$
55. Two lumps composed of Gold, Silver and Copper together weight 20 kg , one lump contains 75% gold and 31.25 gm per kg of silver. The other contains 85% gold and

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

30 gm per kg of silver. The total quantity of silver in two lumps is 617.05 gm . If the two lumps are melted and formed into one, then the gold in new lump will be
(A) 50%
(B) 78%
(C) 89%
(D) 67%

Directions - In the series of each question what will replace the question mark?
56. $6,11,21,36,56$ (?)
(A) 51
(B) 42
(C) 81
(D) 91
57. $16^{5}+2^{15}$ is divisible by
(A) 31
(B) 13
(C) 27
(D) 33
58. Two trains 121 m and 99 m in length respectively are running in opposite directions, one at the rate of 40 kmph and the other at the rate of 32 kmph . In what time will they be completely clear of each other from the moment they meet?
(A) 110 sec

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) 99 sec
(C) 88 sec
(D) 11 sec

Directions (59-64) : Study the following information carefully and answer the questions given below.

Seven friends Q, R, S, T, U, V and W work at different places in India le. Kolkata, Delhi, Bangalore, Baroda, Chennai, Hyderabad and Mumbai not necessarily in that order. They work for the branches of three organizations i.e. Vision, Skylark and Source one. Not more than three and not less than two of them work in any of the organizations. U works at Baroda. S works at Mumbai and is in the same organization as W only. The one who works at Bangalore does not work with Skylark. R works with Skylark and is placed at Hyderabad. T does not work at Delhi. Q works at Chennai and is in the same organization as only U . Vision is the only organization with a branch at Baroda.
59. Which three friends work in the same organization?
(A) Q, U, T
(B) V, R, W
(C) V, R,T
(D)W,RT
60. Who works at Delhi ?
(A) W
(B) T
(C) U

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(D) None of these
61. Who works at Bangalore ?
(A) V
(B) T
(C) W
(D) Data inadequate
62. Who works at Kolkata ?
(A) R
(B) W
(C) V
(D) T
63. In which organization does R work ?
(A) Skylark
(B) Vision
(C) Sourceone
(D) Either (A) and (B)
64. Who work with the organization Source one?
(A) Q, U
(B) S, W
(C) S, V
(D) Data inadequate

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Directions (65-70) : Some friends are sitting on a bench, Sunil is sitting next to Sunita and Sanjay is sitting next to Bindu. Bindu is not sitting with Sumit. Sumit on the left end of the bench and Sanjay is on second position from right hand side.Sunil is on the right side of Sunita and to the right side of Sunil. Sunil and Sanjay are sitting together. Based on the above sitting arrangements, answer the following questions.
65. Sunil is sitting between
(A) Sunita and Bindu
(B) Sumit and Bindu
(C) Sunita and Sanjay
(D) None of these
66. Who is sitting in the centre ?
(A) Sumit
(B) Sunil
(C) Bindu
(D) Sanjay
67. Sanjay is sitting between
(A) Bindu and Sunita
(B) Sunil and Sumit
(C) Sunita and Bindu
(D) None of these

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
68. Sumit is sitting on the
(A) Second place from right
(B) Second place from left
(C) Extreme left
(D) Extreme right
69. Bindu is sitting on the
(A) Extreme left side
(B) Extreme right side
(C) Second from left side
(D) Third from left side
70. Sunita is sitting how many places away from Bindu ?
(A) 1
(B) 2
(C) 4
(D) 5

Questions (71-75): Read the following and answer the questions that follow.
DAV College, Chandigarh is selecting a four - person debate team. There are seven candidates of equal ability X, Y and Z who attended the science block courses and L, M, N and P who attended the commerce block courses. The team must have two members from each block. Also, the members must be able to work well with all the other members must be able to work well with all the other members of the team. Note that debaters Y and L, Z and N, and L and M are incompatible pairs.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
71. If debater Y is rejected and M is selected the team will consist of
(A) L, M, X and Z
(B) $\mathrm{M}, \mathrm{N}, \mathrm{X}$ and Z
(C) M, N, P and X
(D) None of these
72. If debater L is on the team, what other debaters must be on the team as well ?
(A) M, X and Z
(B) N, X and Z
(C) P, N and Z
(D) None of these
73. If both Y and Z are selected, which of the other debaters are thereby assured of a place on the team ?
(A) Both L and M
(B) Both M and P
(C) Only N
(D) Both N and
74. Which of the following must be false?
(I) Debaters M and Z cannot be selected together.
(11) Debaters N and Y cannot be selected together.
(III) Debaters P and Z cannot be selected together.
(A) I Only

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) II Only
(C) III Only
(D) None of these
75. Which of the following is true of debator X ?
(I) Debator X must be selected as one of the science block members of the team.
(II) Debator X must be selected if N is selected.
(III) Debator X cannot be selected if both L and N are rejected.
(A) I only
(B) II only
(C) III only
(D) I and III

Directions (76-80) : Five skilled attendants L:, M, N, P and R are to attend the task everyday during the six hours working period.
(1) Each one will attend the work for one hour.
(2) There will be a gap of two hours between the hours being attended by N and P.
(3) R will attend the work immediately before the rest hour (T). The rest hour (T) is not the second or the fourth hour.
(4) will attend the work before M.
(5) Nor P will not be the first to start attending the day's work.
(6) P will attend the work from 4:00 p.m. which is immediately after the rest hour.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Page 26
76. What are the working hours of ' M ' with reference to that of ' L ' ?
(A) Immediately before
(B) Immediately after
(C) Two hours after
(D) Cannot be determined
77. How many hour's gap will be there between the working hours of M and \sum ?
(A) Cannot be determined
(B) Two
(C) Three
(D) None of these
78. Which of the following is the correct statement?
(A) 'L' works the end-hour
(B) ' M ' precedes ' P ' as far as working hours are concerned
(C) 'N' precedes 'L' as far as working hours are concerned
(D) Rest hour begins at 3:00 p.m.
79. What is the starting time of R's working hour ?
(A) 1:00pm.
(B) 2:00 p.m.
(C) 3:00 p.m.
(D) None of these

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
80. what will replace the question mark?

2, 15, 41, 80, (?)
(A) 111
(B) 120
(C) 121
(D) 132

Directions (81-85) : Study the following information carefully and answer the questions given below :
P, Q, R, S, T, W and Z are seven students studying in three different institutes -A, B and C. There are three girls among them studying one each of these institutes. Two of them study mechanical engineering, two study medicine and one each study biotechnology, pharmacy and electrical engineering. R studies with only her best friend P who studies pharmacy in college B. No girl studies either biotechnology or electrical engineering. T studies mechanical engineering in college A and his brother W studies electrical engineering in college C . None of the two studying medicine studies in college B. S studies biotechnology along with T and Z .
81. Which of the following pairs of students study medicine?
(A)
(B) ZW
(C) $Z Q$
(D) TQ
82. Which of the following three represents the three girls ?
(A) SZQ

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) ZRQ
(C) SRQ
(D) Data inadequate
83. In which college does Q study ?
(A) C
(B) B
(C) A or B
(D) Data inadequate
84. In which colleges do three of them study ?
(A) C
(B) B
(C) A or C
(D) None of these
85. Which of the following is the field of study of Z ?
(A) Medicine
(B) Mechanical
(C) Electrical
(D) Data inadéquate

Directions (86-90) :- Study the following information carefully and answer the questions given below :

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

P, Q, R, S, T, V, Q and Z are three different vehicles. There are atleast two passengers in each vehicle-I, II and III and one of them is a lady. There are two engineers, two doctors and three teachers among them. R is lady doctor and she does not travel with the pair of sisters P and V . Q a male engineer travels with only W, a teacher in vehicle I. S is a male doctor. Two persons belonging to same profession do not travel in the same vehicle. P is not an engineer and travels in vehicle II.
86. How many lady members are there among them?
(A) Three
(B) Four or Five
(C) Three or Four
(D) Data inadequate
87. Which of the following is not correct
(A) T-Male-Teacher
(B) Q-Male-Engineer
(C) P-Female-Teacher
(D) V-Female-Teacher
88. What is V 's profession?
(A) Engineer
(B) Teacher
(C) Doctor
(D) Data inadequate

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
89. In which vehicle does R travel ?
(A) I
(B) II
(C) III
(D) II or III
90. Which of the following represents the three teachers ?
(A) WTV
(B) WTP
(C) WTV or WTP
(D) None of these

ENGLISH
91. ARID : MOISTURE ::
(A) deserted : dune
(B) sandy: water
(C) verdant : sunshine
(D) silent: sound
92. HUNGER:SATIATED ::
(A) fatigue : rested
(B) pain : hospitalized
(C) fatigue : sleeping
(D) activity : dormant

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
93. I did not find a single mouse \qquad
(A) alive
(B) single
(C) all
(D) whole
94. Antonym of ABSTAIN
(A) Adore
(B) Pardon
(C) Blame
(D) Consume
95. Antonym of PALATABLE
(A) lovable
(B) tasty
(C) rascal
(D) detesting
96. Antonym of VERNACULAR
(A) native
(B) incorrigible
(C) perfect
(D) Different

97. Antonym of PASTIME

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(A) employment
(B) amusement
(C) hobby
(D) enjoy
98. Antonymof NEBULOUS
(A) Certain
(B) Vague
(C) Insignificant
(D) Inadequate
99. Antonym of FORBID
(A) Darken
(B) Abolish
(C) Permit
(D) Confuse
100. Antonym of PROGNOSIS
(A) Identification
(B) Preface
(C) diagnosis
(D) Scheme

PASSAGE

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
"Let us laugh," says, W. Mathews, "it is the cheapest luxury man enjoys. It stirs up the blood, expands the chest, clears away the cobwebs from the brain and gives the whole system a healthy treatment." So is it not nice to laugh a lot? It is said, "Laughter is the best medicine." For those who dislike medicine, sweet or bitter, a good joke that provokes laughter is prescribed. It is nice to have a good laugh but a "guffaw" may sometime lock one's jaws and so it is suggested that those who enjoy a loud guffaw go slow and subside into a gurgle but the best thing is, las done in Honorable courts before Hon'ble Judges, just titter. And finally, If fee that I should smile, laugh heartily (without the predicament of lockjaw) and be able to enjoy all jokes including ones directed at myself. But never making a vaughing stock of myself in the process. Let us remember the wise saying, "He is not laughed at that laughs at himself."
101. It is said that laughter is the best medicine because
(A) it is the cheapest luxury màn enjoys
(B) it is available free of cost
(C) it is cheaper whereas medicines n the shops are costly
(D) it provides better treatment than costly medicines
102. The writer says he would never make a stock of himself. It means he should not
(A) let others ridicule him
(B) Show disrespect to Judges
(C) laugh, but simple smile at others
(D) let others laugh

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
103. The writer feels laughter is to be prescribed to those who
(A) are seriously ill
(B) dislike medicines
(C) cannot buy medicines
(D) do not need medicines

Directions: Look at the italic part of each sentence. Below each sentence are given three possible substitutions of the italic part. If one of them (a) (b) or (c) is better than the (a), (b) or (c). If none of the substitutions improve the sentence, indicate (d) as your response on the Answer Sheet. Thus a No improvement' response will be signified by the letter (d).
104. Belonged to this cadre, you are eligible for facilities such as free air travel and accommodation.
(A) Since you belong to
(B) Whoever belong
(C) For belonging to
(D) No improvement
105. The bank has hired a consultant who will look into any issues which arise during the merger.
(A) is looking over
(B) will be looked after
(C) will look out
(D) No improvement

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Directions: In the following items some parts of the sentence have been jumbled up. You are required to rearrange these parts which are labelled as $P, Q R$ and S to produce the correct sentence, Choose the proper sequence and mark in you Answer Sheet accordingly:
106. The secretary announced that to findanswer to thesequestions in anattempt $P \quad Q$
anatioal workshop on technical traininghas beenorganized
R
by the Confederation of EngineeringIndusty
S
The proper sequence should be:
(A) Q P S R
(B) P Q R S
(C) Q P R S
(D) P Q S R
107. You have been writing to me often about
getting a first prize in sports etc. by my daughter
P
Q
distinguishing in afancy dresshow,or
R
such achievement make me apprehensive of your educational progress

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

The proper sequence should be:
(A) Q P R S
(B) R S Q P
(C) Q S R P
(D) R P Q S

Direction: Fill in the numbered blanks with the most suitable word from the given choices provided under the passage.

The committee's \qquad to the government to set up a model National Stock Exchange (NSE) has \qquad controversial. The recommendations are \qquad 110 on the perception that the country doesn'treally want to set up too many stock exchanges.
108. (A) feature
(B) view
(C) suggestion
(D) idea
109. (A) changed
(B) become
(C) evolved
(D) done
110. (A) viewed
(B) prepared
(C) based

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(D) argued

COMPUTER APPLICATION

111. Consider the function

$$
\begin{aligned}
& \text { find (int } x \text {, int } y \text {) } \\
& \text { return }((x<y>) \quad ? \quad 0 \quad: \quad(x-y)) \text {;) }
\end{aligned}
$$

Let a, b be two non-negative integers. The call find (a, find (a, b) can be used to find the
(A) maximum of a, b
(B) positive difference of a, b
(C) sum of a, b
(D) minimum of a, b
112. Which binary addition is incorrect?
(A) 100101-100011=000000
(B) $10000000-01000000=1000000$
(C) $1011110.1-101011.11=110010.11$
(D) 11111111-1111111=10000000
113. For the switching circuit, taking open as 0 and closed as 1 , the expression for the circuit is Y .

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Y is given by
(A) $A+(B+C) D$
(B) $A+B C+D$
(C) $A(B C+D)$
(D) None of these
114. If abc is the input, then the following program fragment
char $\mathrm{x}, \quad \mathrm{y}, \quad \mathrm{z}$;
printf ("\%d", scanf ("\%c\%c \%c", \&x, \&y, \&z)) ; results in
(A) A syntax error
(B) A fatal error
(C) Segmentation violation
(D) Printing of 3
115. 11001, 1001 and 111001 correspond to the 2's complement representation of the following set of numbers
(A) 25, 9 and 57 respectively
(B) $-6,-6$ and -6 respectively
(C) 7, 7 and 7 respectively
(D) $-25,-9$ and -57 respectively

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

116. Pick the correct statements .

The logic of Pumping lemma is a good example of
(A) The Pigeon - hole principle
(B) The divide and computer technique
(C) Recursion
(D) Iteration
117. The number of cross point needed for 10 lines in a cross point switch which is full duplex in nature and there are no self connection is
(A) 100
(B) 45
(C) 50
(D) 90
118. A hash table with 10 buckets with one slot per bucket is depicted in Fig. The symbols, S1 to S7 are initially entered using a hashing function with linear probing. The maximum number of comparisons needed in searching an item that is not present is

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) 4
(B) 5
(C) 6
(D) 3
119. Memory protection is of no use in a
(A) Single user system
(B) Non - multiprogramming system
(C) Non - multitasking system
(D) None of the above
120. A program P calls two subprograms $P 1$ and $P 2$. $P 1$ can fail 50% times and $P 2$ can fail 40% times. The program P cań fail
(A) 50%
(B) 60%
(C) 10%
(D) 70\%

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

ANSWER KEY

Ques	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	B	A	A	B	B	A	C	C	D	B	D	B	C	D	A	A	B	A	C	D
Question	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Answer	D	D	C	C	D	A	A	B	B	C	B	C	B	A	B	D	B	C	A	B
Question	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Answer	A	D	B	C	C	B	A	A	C	B	C	B	D	A	B	C	D	D	C	D
Question	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Answer	C	D	A	B	C	B	D	C	B	B	D	D	B	D	B	C	D	B	D	D
Question	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Answer	C	B	A	D	A	B	D	A	C	B	D	A	A	D	D	D	A	A	C	C
Question	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Answer	A	A	B	A	D	C	D	C	B	C	D	A	C	D	C	A	B	B	D	D

HINTS AND SOLUTIONS

MATHEMATICS

1.(B)

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
x^{3}-1,1<x<\infty \\
x-1,-\infty<x \leq 1
\end{array}\right. \\
& \therefore \quad f(1)=1-1=0
\end{aligned}
$$

$(1)=\lim _{x \rightarrow 0} \frac{f(1+h)-f(1)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{\left[(1+h)^{3}-1\right]-0}{h}-3
$$

f^{\prime} (1)
$1)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}$

$$
=\lim _{h \rightarrow 0} \frac{(1-h)-1-0}{-h}=1
$$

$(1) \neq L f^{\prime}(1)$
$f(x)$ is not differentiable at $x=1$

$$
\text { Again } f(1+0)=\lim _{h \rightarrow 0} f(1+h) \quad=\lim _{h \rightarrow 0}(1+h)-1=0
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
f(1-0)=\lim _{h \rightarrow 0} f(1-h)=\lim _{h \rightarrow 0}(1-h)-1=0
$$

Hence $f(x)$ at $x=1$ is continuous but not differentiable.
2.(A) $I=\int e^{x} \sec ^{2}\left(e^{x}\right) d x$

Put $e^{x}=t \Rightarrow e^{x} d x=d t$
$\therefore \mathrm{I}=\int \sec ^{2} \mathrm{tdt}=\tan \mathrm{t}+\mathrm{k}=\tan \left(\mathrm{e}^{\mathrm{x}}\right)+\mathrm{k}$
3.(A) $\quad \int x(2 x+3)^{1 / 2} d x \quad=x \frac{(2 x+3)^{3 / 2}}{3 / 2} \frac{1}{2}-\int \frac{(2 x+3)^{3 / 2}}{3 / 2} \frac{1}{2} d x+c$
$=\frac{1}{3} x(2 x+3)^{3 / 2}-\frac{1}{3} \int(2 x+3)^{3 / 2} d x+c \quad=\frac{1}{3} x(2 x+3)^{3 / 2}-\frac{1}{15}(2 x+3)^{5 / 2}+c$.
4.(B) Let $y=\frac{1-x+x^{2}}{1+x+x^{2}}$, then $y+y x+y x^{2}=1-x+x^{2} \Rightarrow x^{2}(y-1)+x(y+1)+y-1=0$ For real value of $x, b^{2}-4 a c \geq 0$
i.e. $(y+1)^{2}-4(y-1)^{2} \geq 0$
$\Rightarrow \quad(3-y)(3 y-1)$
$\Rightarrow[y+1-2(y-1)][y+1+2(y+1)] \geq 0$
$\Rightarrow(y-3)(y-1 / 3) \geq 0 \quad \Rightarrow$
$\frac{1}{3} \leq y \leq 3$
Hence m in value of $y=\frac{1}{3}$.
5.(B) $f(x)=\sin x+\frac{2 \sin x \cos x}{2}=\sin x+\frac{\sin 2 x}{2}$
$f^{\prime}(x)=\cos x+\cos 2 x$
For max. and min $\cos x=\cos 2 x=0 \quad \Rightarrow \cos 2 x=-\cos x=\cos (\pi-x)$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\Rightarrow 2 \mathrm{x}=\pi-\mathrm{x} \Rightarrow \mathrm{x}=\frac{\pi}{3}$
$f^{\prime \prime}(x)=-\sin x-2 \sin 2 x \Rightarrow$

$$
f^{\prime \prime}(x)_{x=\pi / 3}=-\sin \frac{\pi}{3}-2 \sin 2 \cdot \frac{\pi}{3}<0
$$

Hence $f(x)$ has max. at $x=\pi / 3$ and max value

$$
=\sin \frac{\pi}{3}\left(1+\cos \frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}\left(1+\frac{1}{2}\right)=\frac{3 \sqrt{3}}{4} .
$$

6.(A) $x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}$

$v+x \frac{d v}{d x}=1+v+v^{2} \quad \Rightarrow \int \frac{d v}{1+v^{2}}=\int \frac{d x}{x} \quad \Rightarrow \tan ^{-1} v=\log x+c$
$\Rightarrow \tan ^{-1} \frac{y}{x}=\log x+c$
7.(C)
$\frac{d y}{d x}-\frac{2}{x} y=x+\frac{1}{x} \sin \frac{1}{x^{2}}$
I.F. $=\mathrm{e}^{-2 \int \frac{1}{\mathrm{x}} \mathrm{dx}}=\frac{1}{\mathrm{x}^{2}}$

Sol Is
$\frac{y}{x^{2}}=\int\left(x+\frac{1}{x} \sin \frac{1}{x^{2}}\right) \cdot \frac{1}{x^{2}} d x+C=\int \frac{1}{x} d x+\int \frac{1}{x^{3}} \sin \frac{1}{x^{2}} d x+C$
$=\log x-\frac{1}{2} \int \sin t d t+C$
put $\frac{1}{x^{2}}=t \Rightarrow-\frac{2}{x^{3}} d x=d t$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\frac{y}{x^{2}}=\log x+\frac{1}{2} \cos t+C=\log x+\frac{1}{2} \cos \frac{1}{x^{2}}+C
$$

8.(C) $\operatorname{Siny} \frac{d y}{d x}=\cos y-x \cos ^{2} y$.

Divide by $\cos ^{2} y$
$\tan y \sec y \frac{d y}{d x}-\sec y=-x$
put $\sec y=\operatorname{tsec} y \tan y \frac{d y}{d x}=\frac{d t}{d x}$
$\frac{d t}{d x}-t=-x$
I.F. $=e^{-\int d x}=e^{-x}$.
9.(D) Formula for $(\mathrm{n}+1)$ the approximated value of x by False position method is

$$
x_{n+1}=x_{n-1}-\frac{\left[x_{n}-x_{n-1}\right] f\left(x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

For end approximation put $n=1$

$$
\begin{aligned}
& x_{2}=x_{0} \frac{\left(x_{1}-x_{0}\right) f\left(x_{0}\right)}{f\left(x_{1}\right) f\left(x_{0}\right)} \\
& x_{2}=\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}
\end{aligned}
$$

Hence (B) is correct answer.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

10.(B) From $h=\frac{b-a}{n}$, we have $h=\frac{1-0}{4}=0.25$

x	0	0.25	0.5	0.75	1
$f(x)=\frac{1}{1+x^{2}}$	1	$\frac{1}{1.0625}$	$\frac{1}{1.25}$	$\frac{1}{1.5625}$	$\frac{1}{2}$
Ordinate	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}

By Simpson's Rule

$$
\begin{aligned}
\int_{0}^{1} f(x) d x= & \frac{h}{3}\left[\left(y_{0}+y_{4}\right)+2 y_{2}+4\left(y_{1}+y_{3}\right)\right] \\
& =\frac{1}{12}\left[\frac{3}{2}+2(0.8)+4\left(\frac{1}{1.0625}+\frac{1}{1.5625}\right)\right]
\end{aligned}
$$

Comparing with given question

$$
a=\frac{1}{1.0625}, b=\frac{1}{1.5625}
$$

Hence (B) is correct answer.
11.(D) $\quad A^{2}=I$

$$
\Rightarrow\left[\begin{array}{ll}
x & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
x & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
x^{2}+1 & x \\
x & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad x^{2}+1=1 \text { and } x=0 \quad x=0 .
$$

12.(B) Given $4 A^{3}+2 A^{2}+7 A+I=0$

Pre-multiply with $A^{-1} \quad \Rightarrow \quad A^{-1}\left[4 A^{3}+2 A^{2}+7 A+I\right]=0 \Rightarrow 4 I A^{2}+2 I A+$

$$
7 I+A^{-1} I=O . A^{-1}
$$

$$
\Rightarrow \quad I\left(4 A^{2}+2 A+7\right)+A^{-1} I=0 \quad \Rightarrow \quad A^{-1}=-\left(4 A^{2}+2 A+7 I\right)
$$

13.(C) The points in the feasible region are

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
(0,0),(0,10),\left(\frac{20}{3}, \frac{10}{3}\right),(10,0)
$$

Objective function $P=x+3 y$

$$
P_{(10,0)}=10, P_{(0,10)}=30, P_{\left(\frac{20}{3}, \frac{10}{30}\right)}=\frac{50}{3}
$$

\therefore Maximum value of $P=30$ at $(0,10)$
Hence (C) is the correct answer.
14.(D) Let the vector bexi $+\mathrm{y} \mathbf{j}$

$$
\therefore \cos 45^{\circ}=\frac{x+y}{\sqrt{2} \sqrt{x^{2}+y^{2}}}=1=\frac{x+y}{\sqrt{x^{2}+y^{2}}}
$$

$\Rightarrow x+y=\sqrt{x^{2}+y^{2}}$ also $\sqrt{x^{2}+y^{2}}=1 \Rightarrow x+y=1$
Again $\cos 60^{\circ}=\frac{3 x+4 y}{5} \Rightarrow \frac{5}{2}=3 x-4 y$
$5=6 x-8 y$
$1=x+y$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
\Rightarrow No value in the given options set satisfies the above relations. Thus (d) is correct.
15.(A) $\quad[a \times b b \times c c \times a]=(a \times b) .[(b \times c) \times(c \times a)]$
$=(\mathbf{a} \times \mathbf{b}) .([\mathbf{b} \mathbf{c} \mathbf{a}] \mathbf{c}-[\mathbf{b} \mathbf{c} \mathbf{c}] \mathbf{a})=(\mathbf{a} \times \mathbf{b}) .([\mathbf{b} \mathbf{c} \mathbf{a}] \mathbf{c}-0)$
$=[\mathbf{b} \mathbf{c} \mathbf{a}][\mathbf{a} \mathbf{b} \mathbf{c}]=[\mathbf{a} \mathbf{b} \mathbf{c}][\mathbf{a} \mathbf{b} \mathbf{c}]=4.4=16$.
16.(A) Given $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}} \leq \mathrm{a}_{\mathrm{i}}, \mathrm{i}=1,2,3 \ldots \mathrm{~m}$

$$
\sum_{j=1}^{n} x_{i j} \leq b_{j}, j=1,2, \ldots \ldots, n
$$

(2)

From condition (1), we have
$x_{11}+x_{12}+x_{13} \ldots . .+x_{1 n} \leq a_{1} ; i=1$
$x_{21}+x_{22}+x_{23} \cdots \cdots+x_{2 n} \leq a_{2}, i=2$

Total constraints for condition (1) $=\mathrm{m}$.
From condition (2)
$x_{11}+x_{21} \ldots .+x_{m 1}=b_{1} ; j=1$
$x_{12}+x_{22} \cdots+x_{m 2}=b_{2} ; j=2$

$$
x_{1 n}+x_{2 n} \ldots \ldots . x_{m n}=b_{n} ; j
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Total constraints for condition (2) $=\mathrm{n}$.
\therefore To minimise z , total number of constraints $=\mathrm{m}+\mathrm{n}$
Hence (A) is the correct answer.
17.(B) $2 \mathbf{a}-3 b-4 \mathbf{c}=4 i+16 j+6 \mathbf{k}$

$$
|2 \mathbf{a}-3 \mathbf{b}-3 \mathbf{c}|=\sqrt{16+256+36}=\sqrt{308} .
$$

18.(A) Equation of line perpendicular to line $3 x+4 y+5=0$ is $4 x-3 y=\lambda$
which passes through (1, 2)

$$
4-6=\lambda \quad \Rightarrow \lambda=-2
$$

Equation of desired line is $4 x-3 y+2=0$.
19.(C) According to question length of perpendicular on the line from the centre of circle is equal to the radius of the circle.

20.(D) In circle, $x^{2}+y^{2}+14 x+6 y+2=0$
$g=7, f=3, c=2$
centre of circle $(-\mathrm{g},-\mathrm{f})=(0,2)$ (given)

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

For orthogonally inter section,
2 gg ' $+2 \mathrm{ff}=\mathrm{c}+\mathrm{c}^{\prime}$
$0-12=2+c^{\prime} \Rightarrow c^{\prime}=-14$
Put the values, in equation
$x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$

$$
\Rightarrow x^{2}+y^{2}+0-4 y-14=0 \Rightarrow x^{2}-y^{2}-4 y-14=0
$$

21.(D) Given $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$

The equation of tangent at point P is
$\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$
m of tangent $=\frac{b}{\tan \theta} \times \frac{\sec \theta}{a}=\frac{b}{a} \cdot \frac{1}{\sin \theta}$
Hence the equation of perpendicular at P is
$y-b \tan \theta=\frac{-a \sin \theta}{b}(x-a \sec \theta) \quad$ or $b y-b^{2} \tan \theta=-a \sin \theta x+a^{2} \tan \theta$
or $a \sin \theta x+b y=\left(a^{2}+b^{2}\right) \tan \theta$
Similarly the equation of perpendicular at Q is
$a \sin \phi x+b y=\left(a+b^{2}\right) \tan \phi$
On multiplying (i) by $\sin \phi$ and (ii) and by $\sin \theta$
$a \sin \theta \sin \phi x+b \sin \phi y=\left(a^{2}+b^{2}\right) \tan \theta \sin \phi$
$a \sin \theta \sin \phi x+b \sin \theta y=\left(a^{2}+b^{2}\right) \tan \phi \sin \theta$
On subtraction

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
by $(\sin \phi-\sin \theta)=\left(a^{2}+b^{2}\right)(\tan \theta \sin \phi-\tan \phi \sin \theta)$
$\therefore \quad \mathrm{y}=\mathrm{k}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{~b}} \frac{\tan \theta \sin \phi-\tan \phi \sin \theta}{\sin \phi-\sin \theta}$
$\because \quad \theta+\phi=\frac{\pi}{2} \Rightarrow \phi=\frac{\pi}{2}-\theta$
$\Rightarrow \sin \phi=\cos \theta$ and $\tan \phi=\cot \theta$
$\therefore \quad \mathrm{y}=\mathrm{k}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{~b}} \frac{\tan \theta \cos \theta-\cot \theta \sin \theta}{\cos \theta-\sin \theta}$
$=\frac{a^{2}+b^{2}}{b}\left(\frac{\sin \theta-\cos \theta}{\cos \theta-\sin \theta}\right)=\frac{-\left(a^{2}+b^{2}\right)}{b}$
22.(D)

$$
\begin{aligned}
& S=\frac{n}{2}[2 a+(n-1) d] \Rightarrow 406=\frac{n}{2}[6+(n-1) 4] \Rightarrow 812=n[6+4 n-4] \\
& \Rightarrow 812=2 n+4 n^{2} \Rightarrow 406=2 n^{2}+n \Rightarrow 2 n^{2}+n-406=0 \\
& \Rightarrow \quad n=\frac{-1 \pm \sqrt{1+4.2 \cdot 406}}{2.2}=\frac{-1 \pm \sqrt{3249}}{4}=\frac{-1 \pm 57}{4}
\end{aligned}
$$

Taking (+) sign, $n=\frac{-1+57}{4}=14$.
23.(C) $\quad S n=1(1!)+2(2!)+3(3!)+\ldots . .+n(n!)$

$$
\begin{align*}
& =(2-1)(1!)+(3-1)(2!)+(4-1)(3!)+\ldots .+[(n+1)-1](n!) \\
& =(2.11-1!)+(3.2!-2!)+(4.3!-3!)+\ldots .+[(n+1)(n!)-(n!)] \\
& =(2!-1!)+(3!-2!)+(4!-3!)+\ldots .+[(n+1)!-(n)!] \\
& =(n+1)!-1!. \tag{i}
\end{align*}
$$

24.(C) As $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in G.P. $\therefore \mathrm{q}^{2}=\mathrm{pr}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are also in G.P. $\therefore \mathrm{b}^{2}=\mathrm{ac}$
From (i) and (ii)
$q^{2} b^{2}=(p r)(a c) \Rightarrow(b q)^{2}=(c p) \cdot(a r)$
Hence cp, bq, ar are in G. P.
25.(D)
$S=1+\frac{3}{2!}+\frac{6}{3!}+\frac{10}{4!}+\ldots$.
$=1+\frac{1+2}{2!}+\frac{1+2+3}{3!}+\frac{1+2+3+4}{4!}+\ldots \ldots+\frac{1+2+\ldots .+n}{n!}+$
Here
$T_{n}=\frac{\frac{n}{2}(n+1)}{n!}=\frac{1}{2} \cdot \frac{(n-1)+2}{(n-1)!}=\frac{1}{2}\left\{\frac{1}{(n-2)!}+\frac{2}{(n-1)!}\right) \Rightarrow S=\sum T_{n}=\frac{1}{2}\left(\sum \frac{1}{(n-2)!}+\sum \frac{2}{(n-1)!}\right)$ $=\frac{1}{2}(e+2 e)=\frac{3 e}{2}$.
26.(A) $\quad P^{\prime}(x)=5 x^{4}+20 x^{3}-80 x-80$, so $P(-2)=80-160+160-80=0$.

Thus, the zero at $p=-2$ has multiplicity $m \geq 2$, which implies that Newton's method has linear convergence (that is, the order of convergence is 1).
27.(A)
 (x) at
$x=-\infty,-1,1$ and ∞ are :

x	$-\infty$	-1	1	∞
$f(x)$	$-\infty$	$k+2$	$k-2$	∞

If all roots of the given equation are real, then

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\mathrm{k}+2>0 \text { and } \mathrm{k}-2<0 . \Rightarrow-2<\mathrm{k}<2 .
$$

Hence the range of k is $(-2,2)$.
Hence (A) is the correct answer.
28.(B) Here, it is given that $f: G \rightarrow H$ is group homomorphism from a group G into H with kernel K.
$\therefore \quad$ By given condition that $\mathrm{O}(\mathrm{G})=75$

$$
\therefore \quad \text { By first fundamental theorem We have } f(G)
$$

$\Rightarrow \quad \mathrm{O}\{\mathrm{f}(\mathrm{G})\}=\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{K}}\right)$

$$
\Rightarrow \quad \mathrm{O}\{\mathrm{f}(\mathrm{G})\}=\frac{\mathrm{O}(\mathrm{G})}{\mathrm{O}(\mathrm{~K})}=\frac{75}{15}=5
$$

29.(B) $\quad \mathrm{P}(\mathrm{A})=0.86, \mathrm{P}(\mathrm{B})=0.35, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.29$

$$
\therefore \quad \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.92
$$

30.(C) $\quad A \cup A^{\prime}=S$

$$
P(S)=P\left(A \cup A^{\prime}\right)=P(A)+P\left(A^{\prime}\right)=1
$$

31.(B) Total ways $=C_{2}$

$$
\text { out of } n \text { pairs } 2 r \text { pairs can be selected in }{ }^{n} C_{2 r}
$$

way and from each of the selected $2 r$ pairs
one shoe can be selected in $2^{2 r}$ ways.
favourable case $={ }^{n} C_{2 r} \times 2^{2 r}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Required probability $=\frac{{ }^{n} C_{2 r} \times 2^{2 r}}{{ }^{2 n} C_{2 r}}$
32.(C) $\mathrm{x} \sin \theta=\mathrm{y} \sin \left(\theta+\frac{2 \pi}{3}\right)=\mathrm{z} \sin \left(\theta+\frac{4 \pi}{3}\right)=\frac{1}{\mathrm{k}}$ (say) $\therefore \frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}$

$$
=K\left[\sin \theta+\sin \left(\theta+\frac{2 \pi}{3}\right) \sin \left(\theta+\frac{4 \pi}{3}\right)\right]=K(0)
$$

$$
\left[\therefore \sin x+\sin \left(\theta+\frac{2 \pi}{3}\right)+\sin \left(\theta+\frac{4 \pi}{3}\right)=0\right] \therefore x y+y z+z x=0
$$

\therefore (c) is thecorrect answer.
33.(B) since tan $\alpha=p \therefore \sqrt{1+\tan ^{2} \alpha}=\sqrt{1+\mathrm{p}^{2}} \Rightarrow \sec \alpha=\sqrt{1+\mathrm{p}^{2}} \Rightarrow \cos \alpha=\frac{1}{\sqrt{1+\mathrm{p}^{2}}}$

$$
\text { since } \tan \beta=q \therefore \cos \beta=\frac{1}{\sqrt{1+q^{2}}}
$$

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{1+p^{2}} \sqrt{1+q^{2}}}-\sqrt{1-\frac{1}{1+p^{2}}} \sqrt{1-\frac{1}{1+q^{2}}} \\
& =\frac{1}{\sqrt{1+p^{2}} \sqrt{1+q^{2}}}-\frac{p}{\sqrt{1+p^{2}}} \cdot \frac{q}{\sqrt{1+q^{2}}} \\
& =\frac{1-p q}{\sqrt{1+p^{2}} \sqrt{1+q^{2}}}
\end{aligned}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
34.(A) $\tan \theta=\frac{a}{b} \Rightarrow \sin \theta=\frac{a}{\sqrt{a^{2}+b^{2}}}$

$$
\cos \theta= \pm \frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}
$$

and

$$
\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{\mathrm{b}^{2}-\mathrm{a}^{2}}{\mathrm{~b}^{2}+\mathrm{a}^{2}}
$$

Now, $\frac{\sin \theta}{\cos ^{8} \theta}+\frac{\cos \theta}{\sin ^{8} \theta}$

$$
\begin{aligned}
& =\frac{\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)}{\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)^{8}}+\frac{\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)}{\left(\frac{a}{\sqrt{a^{2}+b^{2}}}\right)^{8}} \\
& =\frac{a}{b^{8}} \frac{\left(a^{2}+b^{2}\right)^{4}}{\sqrt{\left.a^{2}+b^{2}\right)}}+\frac{b}{a^{8}} \frac{\left(a^{2}+b^{2}\right)^{4}}{\sqrt{a^{2}+b^{2}}} \\
& = \pm \frac{\left(a^{2}+b^{2}\right)^{4}}{\sqrt{a^{2}+b^{2}}}\left(\frac{a}{b^{8}}+\frac{b}{a^{8}}\right) .
\end{aligned}
$$

35.(B) $\sin \theta=-\frac{1}{2}, \tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \sin \theta=\sin \left(\pi+\frac{\pi}{6}\right), \tan \theta=\tan \left(\pi+\frac{\pi}{6}\right) \Rightarrow \theta=\pi+\frac{\pi}{6}$
36.(D)

$\therefore R \frac{(1+i)^{2}}{(3-i)}=-\frac{1}{5}$.
37. (B) $z=(x+i y) \Rightarrow z^{2}=x^{2}-y^{2}+2 i x y$
$\Rightarrow \operatorname{Re}\left(z^{2}\right)=1 \Rightarrow x^{2}-y^{2}=1$
which is a hyperbola.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
38.(C) Given : $\sin \left[\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right]=\sin \left[\left(\omega+\omega^{2}\right) \pi-\frac{\pi}{4}\right]$

$$
=\sin \left(-\pi-\frac{\pi}{4}\right)=-\sin (\pi+\pi / 4)=\sin \pi / 4=\frac{1}{\sqrt{2}}
$$

39.(A) Let $x=\sqrt{20+\sqrt{20}+\sqrt{20}+\ldots}$

Since the expression is continued indefinitely, the given quantity does not change even if we leave 20 within the first radical. Therefore $x=\sqrt{20+x}$
squaring, we have $x^{2}=20+x$ or $x^{2}-x-20=0$ or $x^{2}-5 x+4 x-20=0$
or

$$
\begin{array}{ll}
x(x-5)+4(x-5)=0 & \text { or }(x-5)(x+4)=0 \\
x-5=0 & \text { or } \\
x=5 & x+4=0 \\
x=5 & \text { and } x=-4
\end{array}
$$

But as the given expression is a positive quantity, the only admissible value is 5 .
40.(B) Let α, an be the two roots, Then
$\alpha+\alpha^{n}=-b / a, \alpha \cdot \alpha n=c / a$
Eliminating α, we get $\left(\frac{c}{a}\right)^{\frac{1}{n+1}}+\left(\frac{c}{a}\right)^{\frac{n}{n+1}}=-\frac{b}{a}$

$$
a \cdot a^{-\frac{1}{n+1}} \cdot c^{\frac{1}{n+1}}+a \cdot a^{-\frac{n}{n+1}} \cdot c^{\frac{n}{n+1}}=-b \text { or }\left(a^{n} a\right)^{\frac{1}{n+1}}+\left(a c^{n}\right)^{\frac{1}{n+1}}=-b \text {. }
$$

41.(A) From $k=\frac{x^{2}-x+1}{x^{2}+x+1}$

We have $x^{2}(k-1)+x(k+1)+k-1=0$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

As given, x is real $\Rightarrow(k+1)^{2}-4(k-1)^{2} \geq 0$
$\Rightarrow 3 \mathrm{k}^{2}-10 \mathrm{k}+3 \geq 0$
Which is possible only when the value of k lies between the roots of the equation $3 k^{2}-10 k+3=0$ That is, when $\frac{1}{3} \leq k \leq 3$. \{Since roots are $\frac{1}{3}$ and 3$\}$
42.(D)
$\frac{x^{2}}{-35 h-63 h}=\frac{x}{-21-35}=\frac{1}{-3 h+h} \Rightarrow x^{2}=49, x=\frac{28}{h}$
$\therefore\left(\frac{28}{h}\right)^{2}=49 \Rightarrow h^{2}=\frac{28 \times 28}{49}=16$

$$
\Rightarrow \mathrm{h}=4 .
$$

43.(B) $\frac{(n+1)(n+2)}{2}=45(n+1)(n+2)=9.10 \Rightarrow n+1=9 \Rightarrow n=8$.
44.(C) $\quad \frac{1}{6}=\frac{{ }^{n} C_{6}\left(2^{1 / 3}\right)^{n-6}\left(3^{-1 / 3}\right)^{6}}{{ }^{n} C_{n-6}\left(2^{1 / 3}\right)^{6}\left(3^{-1 / 3}\right)^{n-6}}$ $\Rightarrow 6^{-1}=6^{-4} \cdot 6^{\frac{n}{3}}=6^{n^{-4}} \Rightarrow-1=\frac{n}{3}-4 \Rightarrow n=9$.
45. (C)

$$
(1-x)^{3 / 2}=1-\frac{3}{2} x+\frac{\left(\frac{3}{2}\right)\left(\frac{3}{2}-1\right)}{2!}(-x)^{2}+\frac{\frac{3}{2}\left(\frac{3}{2}-1\right)\left(\frac{3}{2}-2\right)}{3!}(-x)^{3}
$$

46.(B) By fixing a boy, boys can be seated in 4 ! ways. Between boys, girls can be seated in $5!$ ways. so Total no. of required ways $=4!\times 5$.
47.(A) Since ${ }^{n} C_{r}={ }^{n} C_{n-r}$
and

$$
{ }^{n} C_{r-1}+{ }^{n} C_{r}={ }^{n+1} C_{r} \text {, we have }
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\sum_{r=0}^{m}{ }^{n+r} C_{n}=\sum_{r=0}^{m}{ }^{n+r} C_{r}={ }^{n} C_{0}+{ }^{n+1} C_{1}+{ }^{n+2} C_{2}+\ldots . .+{ }^{n+m} C_{m}$
$=[1+(n+1)]+{ }^{n+2} C_{2}+{ }^{n+3} C_{3}+\ldots \ldots .+{ }^{n+m} C_{m}$
$=\left({ }^{n+2} C_{1}+{ }^{n+2} C_{2}\right)+{ }^{n+3} C_{3}+\ldots . .+{ }^{n+m} C_{m}$
$\because \quad n+2={ }^{n+2} C_{1}$ or ${ }^{n} C_{1}=n$
$=\left({ }^{n+3} C_{2}+{ }^{n+3} C_{3}\right)+\ldots . .+{ }^{n+m} C_{m}$
$=\left({ }^{n+4} C_{3}+{ }^{n+4} C_{4}\right)+\ldots . .+{ }^{n+m} C_{m}$
\qquad
\qquad
$={ }^{n+m} C_{m-1}+{ }^{n+m} C_{m}$
$={ }^{n+m+1} C_{m}={ }^{n+m+1} C_{n+1}$

48.(A) In all there are $3+4+5=12$ points in a plane.

The number of required triangles $=$ (The number of triangles formed by these 12 points) - (The number of triangles formed by the collinear points)
$={ }^{12} \mathrm{C}_{3}-\left({ }^{3} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{3}\right)=220-(1+4+10)=205$.
49.(C) Given that $X=\{0,1,3,5\}, Y=\{1,2,4,7\}$ and $Z=\{1,2,3,4,8\}$ $(X \cap Y) \cup Z$
$1,3,5\} \cap\{1,2,4,7\}] \cup\{1,2,3,5,8\}$
$=\{1\} \cup\{1,2,3,5,8$,
$=\{1,2,3,5,8$,

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
50.(B)
$1+\frac{\log _{e} x}{1!}+\frac{\left(\log _{e} x\right)^{2}}{2!}+\frac{\left(\log _{e} x\right)^{3}}{3!}+\ldots+\frac{\left(\log _{e} x\right)^{n}}{n!}+\ldots$.
$=e^{\left(\log _{e} x\right)}=x$.

REASONING

51.(C) Since the rate of return i.e. rate of interest each receives in the proportion to the amount of his contribution.
\therefore Rates of interest are $75000: 150000: 300000=1: 2: 4$.
\therefore Rahul's share of profits $=$ Rs. $\left(\frac{r}{100} \times 75000\right)=750 \mathrm{r}$
Mukesh's share of profits $=$ Rs. $\left(\frac{2 r}{100} \times 150,000\right)=3000 r$

Anil's share of profits = Rs.
$\left(\frac{4 r}{100} \times 300,000\right)=120000 r$
Since the total profit of a year amounts to Rs. 94500, we have
$750 r+3000 r+12000 r=94500 \Rightarrow 15750 r=94500 \Rightarrow r=\frac{94500}{15750}=6$
\therefore The profits are Rs. 4500 , Rs. 18000 and Rs. 72000.
52.(B) Given earnings of 4 man per day = earnings of 7 women per day $\Rightarrow 4 \mathrm{M}=7 \mathrm{~W}$

Again earnings of 1 women per day = earnings of 2 boys per day $\Rightarrow 1 \mathrm{~W}=2$
B
From (i) and (ii) ratio of earnings of M.W.B $=7: 4: 2$.
Now $(6 M+10 W+14 B) \times B=2200$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\Rightarrow(6 \times 7 x+10 \times 4 x+14 \times 2 x)=275 \Rightarrow 110 x=275 \Rightarrow x=2.5
$$

Earnings of $8 \mathrm{M}+6 \mathrm{~W}$ per day $=8 \times 7 \mathrm{x}+6 \times 4 \mathrm{x}=56 \mathrm{x}+24 \mathrm{x}=80 \mathrm{x}=200$.
\therefore Earnings of 8 men and 6 women in 10 days $=200 \times 10=$ Rs. 2000 .
53.(D) We have 4 men $\equiv 5$ women; 1 man $\equiv 5 / 4$ women; 2 women $\equiv 4$ boys; 1 women $\equiv 2$ boys; $5 / 4$ women $\equiv 2 \times(5 / 4)$ boys $=5 / 2$ boys of 1 man $\equiv 5 / 4$ women $\equiv 5 / 2$ boys.

Now $2 M+2 W+4 B=2 \times 5 / 2 B+3 \times 2 B+4 B=15 B$
or 15 boys do the work in 10 days (10 hectares).
$6 \mathrm{M}+4 \mathrm{~W}+7 \mathrm{~B}=(6 \times 5 / 2+4 \times 2+7) \mathrm{B}=30$ boys. 30 boys will do 16 hectares of work in $10 \times(15 / 30) \times(16 / 10)=8$ days.
54.(A) Let w kg of alloy contains $\mathrm{z} \%$ of zinc in it.

Now when 3 kg of pure zinct is added to alloy we get $\left(\frac{z}{100} \times w\right)+3=\frac{90}{100}(w+3)$
(Given the resulting alloy contains 90% zinc)

$$
\begin{equation*}
z w+300=90 w+270 \Rightarrow 90 w-z w=30 \tag{i}
\end{equation*}
$$

When 2 Kg of 90% zinc ahloy is mixed, we get 84% zinc

$$
\begin{equation*}
\Rightarrow\left(\frac{z}{100} \times w\right)+\frac{90}{100} \times 2=\frac{84}{100}(w+2) \Rightarrow z w+180=84 w+168 \Rightarrow 84 w-z w=12 \tag{ii}
\end{equation*}
$$

Solving (i) and (ii) we get $w=3 \mathrm{~kg}, \mathrm{z}=80 \%$.
The amount of zinc in the alloy $=3 \times \frac{80}{100}=2.4 \mathrm{k} . \mathrm{g}$.
55.(B) 1st lump weights $X \mathrm{~kg}$, 2nd lump weights $(20-x) \mathrm{kg}$.
$31.25 X+30(20+X)=617.5 ; X=14 \mathrm{~kg}$. (Quantity of silver)
$\therefore \quad$ Weight of second lump $=6 \mathrm{~kg}$
$\Rightarrow 75 \%$ of $14 \mathrm{~kg}+85 \%$ of $6 \mathrm{~kg}=10.5+5.1=15.6 \mathrm{~kg}$ (Quantity of gold)
The required percentage of gold in new lump $=(15.6 / 20) \times 100=78 \%$.
$\begin{array}{llllll}6 & 11 & 21 & 36 & 56 & 81 \\ & 4 & A & 4 & 4\end{array}$
56.(C) $+5+10+15+20+25$
57.(D) $16^{5}+2^{15}=2^{20}+2^{15}=2^{15}\left(2^{5}+1\right) \rightarrow$ Hence, is divisible by 33 .
58.(D) Time taken to cover $=(121+99)=220 \mathrm{~m}$

59-64

65-70
: make a sketch of sitting positions based on the description given :

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

65.(C),
66.(B), 67.(D),
68.(C),
69.(B), 70.(B)

71-75.The diagram will be:
Science Block
Commerce Block
(Two from each block)
x
$\mathrm{Y} \leftarrow$ Not with $\rightarrow \mathrm{L} \leftarrow$ Not with $\rightarrow M$
$\mathrm{Y} \leftarrow$ Not with $\rightarrow \mathrm{N}$
This diagram helps to decide who can and can't be on the team with a particular other candidate.

- L's inclusion base Y and M, Y 's omission requires the inclusion of X and Z to have two Science block candidates.
- Selection of Y and Z excludes L and N respectively, thus assuring the selection of P and M, therefore choice (b).
-The answer gives an example of M, P and Z being in the same team, thus falsifying statement (I) and (III). N, P, Y and X is a possible team which shows the error of II.
71.(D), 72.(D), 73.(B), 74.(D), 75.(B)

76-78.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

R	T	L	N	M	P
$\xrightarrow{1 \mathrm{hr}} \xrightarrow{1 \mathrm{hr}} \xrightarrow{1 \mathrm{hr}} \xrightarrow{\text { hhr }} \xrightarrow{1 \mathrm{hr}} \xrightarrow{1 \mathrm{hr}}$					

76. (C) 77. (D) 78. (B) 79.(D)
80.(D)

81-85.

Students	Institution	Subject		B	C	Mech Eng.	Medi	Biotech	Pharm	Ele. Eng.
	A	B	\times	\times	\times	\times	\checkmark	\times	Sex	
P	\times	\checkmark	\times	\times	\checkmark	\times	\times	\times	Goy	
Q	\times	\times		\times	\times	\times	\times	\times	Girl	
R	\times	\checkmark	\times	\times	\times	\checkmark	\times	\times	Boy	
S	\checkmark	\times		\times	\times	\times	\times	\times	\times	Boy
T	\checkmark	\times	\times	\checkmark	\times	\times	\times	\checkmark	Boy	
W	\times		\times		\checkmark	\times	\times	\times	\times	\times
Z	\checkmark	\times	\times	\times	\checkmark	\times	\times	\times	Girl	

81.(C) 82. (B) 83. (A) 84. (D)
85. (A)

86-90.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Vehicle			Passengers	Occupation			Gender
	I	II			En.	Dr.	T.
\times	\checkmark	\times	P	\times	\times	\checkmark	Female
\checkmark	\times	\times	Q	\checkmark	\times	\times	Female
\times	\times	\checkmark	R	\times	\checkmark	\times	Female
\times	\checkmark		S	\times	\checkmark	\times	Male
\times	\times	\checkmark	T	\times	\times	\checkmark	Male
\times	\checkmark	\times	V	\checkmark	\times	\times	Female
\checkmark	\times	\times	W	\times	\times	\checkmark	Female

En. - Engineer
Dr. - Doctor
T. - Teacher
86. (B)
87. (D)
88. (A)
89. (C)
90. (B)

ENGLISH

91.(D) Arid :- Lacking sufficient water or rainfall.

Moisture :- Wetness caused by water.
Thus arid is an antonym of moisture. In the same manner silent: sound are opposite to each other. Thus option (D) will be accurate.
92.(A) According to hunger: satiated the correct option is (B). When hunger is satisfied it is called satiated, in the same way when pain is healed, it is called hospitalized.
93.(A) Alive is the relevant word for the sentence.
94.(D) Abstain :- Refrain from voting or Choose not to consume. Thus consume is the antonym of abstain.
95.(D) Palatable means :- Acceptable to the taste or mind.

Detesting means :- Dislike intensely; feel antipathy or aversion towards.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Thus Detesting is the antonym of palatable.
96.(D) Vernacular :- common or ordinary, thus Different is the antonym of Vernacular.
97.(A) Pastime :- Leisure time or a diversion that occupies one's time and thoughts (usually pleasantly).

Employment :- The state of being employed or having a job or being busy.
Thus employment is the antonym of pastime.
98.(A) Nebulous :- Lacking definite form or limits.

Definite :- Definite but not specified or identified.
Thus Definite is the antonym of nebulous.
99.(C) Forbid :- Command against. Thus its antonym is permit.
100.(C) Prognosis :- A prediction about how something (as the weather) will develop.

Diagnosis :- the identification of the nature and cause of an illness, e.g. by studying the symptoms.

Thus the antonym of Prognosis is diagnosis.
101.(A) Laughter does not demand money, it is free of cost and good for health too which keeps a person healthy. It is said that laughter is the best medicine because it is the cheapest tuxury man enjoys.
102.(A) At means he should not let others ridicule him.
103.(B) The writer feels laughter is to be prescribed to those who dislike medicines because laughter is the best medicine to cure all diseases.
104.(A) Since you belong to this cadre, you are eligible for facilities such as free air travel and accommodation.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
105.(D) The given sentence is correct.
106.(C) The proper sequence is given below:-

The secretary announced that in an attempt to find answer to these questions a national workshop on technical training has been organized by the Confederation of Engineering Industry.
107.(D) You have been writing to me often about distinguishing in a fancy dress show, or getting a first prize in sports etc by my daughter. Such achievement make me apprehensive of your educational progress.
108.(C) Suggestion is the most suitable word here.
109.(B) Become is the accurate word for the given sentence.
110.(C) Based is the most appropriate word here. COMPUTER APPLICATION
111.(D) The call find (a, find ($a, b)$) can be used to find the minimum of a, b.
112.(A) 2's complement of 100011 Adding with

11001	\Rightarrow	00110	
		+ 1	
		$\overline{00111}$	$=7{ }_{10}$
1001	\Rightarrow	0110	
		+ 1	
		0111	$=7_{10}$
111001	\Rightarrow	000110	
		+ 1	
		$\overline{000111}$	$=7_{10}$

116.(A) Pigeon - hole principle is that if ' n ' balls are to be put in ' m ' boxes, then at least one box will have more than one ball if $n>m$. Though this is obvious, still powerful.
117.(B) As all lines are full - duplex and there are no self connections, only the cross points above the diagonal are needed. Hence formula for the number of cross points needed is $n(n-1) 2$.
118.(B) It will be one more than the size bf the biggest cluster (which is 4) in this case. This is because, assume a seareh key hashing onto bin 8 . By linear probing the next location for searching is bin 9 . Then 0 , then 1 . If all these resulted in a miss, we try at bin 2 and stop as it is vacant. This logic may not work if deletion operation is done before the search .
119.(D) Even in a non - multiprogramming system, memory protection may be used, when, for example, spooling is being used.
120.(D) $1-(1-0.5)(1-0.4)=0.7$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

[^0]: E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

[^1]: E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

