

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com/info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

1. Numerical Differentiation

When for different values of the independent variable, the corresponding values of the function are known, then finding the differential coefficient of that function at any particular values of the independent variable is called numerical differentiation. Following some of the important point for proper selection of the interpolation formula.
(i) If the intervals of the variable are equal, then the function can be obtained by Newton Gregory formula.
(ii) If it is required to find the derivative of the function at a point near the beginning of a set of tabular values, Newton's Gregory forward (backwąd) formula should be used.
(iii) If the derivative at a point near the middle of the table, central difference formula be used.
(iv) If the values of the arguments are unequal spaced, Newton's divided difference formula should be used to represent the function.

Ex. 1 Find first and second derivatives at $x=1.1$ from the following table :

| x | $:$ | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $f(x)$ | $:$ | 0 | 1280 | .5440 | 1.2960 | 2.4320 | 4.00 |

Sol. According to the problem, the variable are equidistant and the value of the derivative of the function at $x=1.1$ is desired, therefore here Newton's Gregory forward formula is preferred:

Table-1: Difference Table

x	$\mathrm{f}(\mathrm{x})$	Δ	Δ^{2}	Δ^{3}	Δ^{4}
1.0	0.0000				
		.1280			
1.2	0.1280		.2880		
		.4160		.0480	
1.4	0.5440		.3360		0
		.7520		.0480	
1.6	1.2960		.3840		
		1.1360		.0480	
1.8	2.4320		.4320		
		1.5680			
2.0	4.000				

Newton's Gregory forward formula is : $f(a+x h)=f(a)+C_{1} \Delta f(a)+{ }^{x} C_{2} \Delta^{2} f(a)+{ }^{x}$ $C_{3} \Delta^{3} f(a)+\ldots$
$=f(a)+x \Delta f(a)+\frac{x^{2}-x}{2} \Delta^{2} f(a)+\frac{x^{3}-3 x^{2}+2 x}{6} \Delta^{3} f(a)+\ldots$
Differentiating (1) twice w.r.t.x,
$h f^{\prime}(a+x h)=\Delta f(a)+\frac{2 x-1}{2} \Delta^{2} f(a)+\frac{3 x^{2}-6 x+2}{6} \Delta^{3} f(a)$
and $\quad h^{2} f^{\prime \prime}(a+x h)=\Delta^{2} f(a)+(x-1) \Delta^{3} f(a)$
Replacing $a=1, h=.2, x=1 / 2$ and substituting the desired differences from the tables, in (2) and (3)
$(.2) f^{\prime}(1.1)=1280+0+\frac{1}{6}\left(3 \times \frac{1}{4}-6 \frac{1}{2}+2\right)(.480)+0 \quad$ or $\quad f^{\prime}(1.1)=.630$
and
$(.2)^{2} f^{\prime \prime}(1.1)=.2880+\left(\frac{1}{2}-1\right)(.0480)+0=.2880-.024=.264$ or,
$\mathrm{f}^{\prime \prime}(1.1)=6.60$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

Ex. 2 Find (.04) from the following table :

$\mathrm{x}:$.01	.02	.03	.04	.05	.06
$\mathrm{f}(\mathrm{x}):$.1023	.1047	.1071	.1096	.1122	.1148

Sol. Here we have to determine the first derivative at $x=.04$ which is situated in the middle of the table and variable are also equidistant. Therefore here the use of Gauss's forward difference formula is preferred.

Take new variable $u=\frac{x-.04}{h}$
Difference Table

x	u	$f(x)=y_{u}$	$\Delta \mathrm{y}_{u}$	$\Delta^{2} \mathrm{y}_{u}$	$\Delta^{3} \mathrm{y}_{u}$	$\Delta^{4} \mathrm{y}_{u}$	$\Delta^{5} \mathrm{y}_{u}$
.01	-3	.1023	.0024				
.02	-2	.1047	.024	0			
.03	-1	.1071	.0024	0001	.0001		
.04	0	.1096	.0025	.00001	0	-.0001	0
.05	1	.1122	.0026	.001	-.0001	-.00001	
.060	2	.1148	.0026	0			

Table-2
Gauss's forward interpolation formula of new variable u is :
$f(u)=f(0)+u \Delta f(0)+\frac{u(u-1)}{2!} \Delta^{2} f(-1)+\frac{u(u+1)(u-1)}{3!} \Delta^{3} f(-1)$

Now

$$
\begin{equation*}
u=\frac{x-04}{h} \quad \therefore \frac{d u}{d x}=\frac{1}{h} \tag{1}
\end{equation*}
$$

Also $\frac{d}{d x}\{f(x)\}=\frac{d}{d u}[f(u)] . \frac{d u}{d x}=\frac{1}{h} f^{\prime}(u)$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com/info@vpmclasses.com

Differentiate (1) wrt u and replace $u=0$ and substitute the desired differences from the table, we get
$f^{\prime}(0)=.0026-\frac{1}{2}(.0001)-\frac{1}{6}(0)+\frac{1}{12}(-.0001)=.00254 \quad$ [on simplifying]
$\therefore \frac{d}{d x} f(x=.04)=\frac{1}{h} f^{\prime}(u=0)=\frac{.00254}{.01}=.254$

2. ARITHMETIC OPERATIONS OVER BINARY NUMBERS

Addition-

Subtraction-

minuend	101101
subtrahend	-100111
sum	000110

Multiplication-
multiplicand multiplier

SUBTRACTION WITH r's COMPLEMENT

The subtraction of two positive numbers ($\mathrm{M}-\mathrm{N}$), both base r , may be done as follows:

1. Add the minuend M to the r 's complement of the subtrahend N.
2. Inspect the result obtained in step 1 for an end carry:
(a) If an end carry occurs, discard it.
(b) If an end carry does not occur, take the r's complement of the number obtained in step 1 and place a negative sign in front.

SUBTRACTION WITH ($r-1$)'s COMPLEMENT

The procedure for subtraction with the ($r-1$)'s complement is exactly the same as the one used with the r's complement except for one variation called "end-around carry," as shown below. The subtraction of $\mathrm{M}-\mathrm{N}$, both positive numbers in base r, may be calculated in the following manner:

1. Add the minuend M to the ($r-1$)'s complement of the subtrahend N.
2. Inspect the result obtained in step 1 for an end carry.
(a) If an end carry occurs, add 1 to the least significant digit (end - around carry).
(b) If an end carry does not occur, take the ($r-1$)'s complement of the number obtained in step 1 and place a negative sign in front.
The following examples illustrate the procedure.
Ex. 3 Subtract (3250-72532) 10
Sol.

answer:-69282 $=-$ (10's complement of 30718)
Ex. 4 Use 2's complement to perform $\mathrm{M}-\mathrm{N}$ with the given binary numbers
(a)
$M=1010100$
$N=1000100$
$M=1010100$
(b)
$M=1000100$
$N=1010100$
1010100

$$
N=1000100
$$

Sol. (a)

2's complement of $N=0111100$

answer 10000
(b)

$$
\begin{aligned}
& M=1000100 \\
& N=1010100 \\
& \text { no carry }
\end{aligned}
$$

2's complement of $\mathrm{N}=0101100$
answer $-10000=-(2$'s complement of 1110000 $)$

