

- Attempt all the questions
- This paper consists of $\mathbf{1 0 0}$ objective type questions.
- Each question carries 4 marks. 1 mark will be deducted for each wrong answer.
- Pattern of questions: MCQs
- Total marks : 400
- Duration of test : $\mathbf{3}$ Hours

For IIT-JAM, JNU, GATE, NET, NIMCET and Other Entrance Exams
1-C-8, Sheela Chowdhary Road, Talwandi, Kota (Raj.) Tel No. 0744-2429714
Web Site wnw.vpmclasses.com E-mail-vpmclasses@yahoo.com

[^0]
MATHEMATICS (1-50)

1. Let A be an $n \times n$ invertible matrix with integer entries and assume that A^{-1} also has only integer entries. Then,
(A) $\operatorname{det} \mathrm{A}=\mathrm{n}$
(B) $\operatorname{det} \mathrm{A}= \pm 1$
(C) $\operatorname{det} A=n^{2}$
(D) $\operatorname{det} A$ will depend on the entries of A and A^{-1}
2. The eigenvalues of $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ are
(A) $\cos \theta$ and $\sin \theta$
(B) $\tan \theta$ and $\cot \theta$
(C) $e^{i \theta}$ and $e^{-i \theta}$
(D) 1 and 2
3. $\frac{\cos 9^{\circ}+\sin 9^{\circ}}{\cos 9^{\circ}-\sin 9^{\circ}}=$
(A) $\tan 54^{\circ}$
(B) $\tan 36^{\circ}$
(C) $\tan 18^{\circ}$
(D) $\cot 18^{\circ}$
4. By graphical method, the solution of programming problem

Maximize $z=3 x_{1}+5 x_{2}$
Subject to $3 x_{1}+2 x_{2} \leq 18, x_{1} \leq 4, x_{2} \leq 6, x_{1} \geq 0, x_{2} \geq 0$
(A) $x_{1}=2, x_{2}=0, z=6$
(B) $x_{1}=2, x_{2}=6, z=36$
(C) $x_{1}=4, x_{2}=3, z=27$
(D) $x_{1}=4, x_{2}=6, z=42$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
5. A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
(A) $\frac{1}{2}$
(B) $\frac{1}{8}$
(C) $\frac{3}{8}$
(D) none of these
6. Let A and B be two independent events such that their, probabilities are $\frac{3}{10}$ and $\frac{2}{5}$. The probability of exactly one of the events happening, is
(A) $\frac{23}{50}$
(B) $\frac{1}{2}$
(C) $\frac{31}{50}$
(D) none of these
7. The Newton-Raphson iteration $x_{\text {niti }}=\frac{1}{2}\left(x_{n}+\frac{R}{x_{n}}\right)$ can be used to compute the
(A) square of R
(B) Reciprocal of R
(C) Square root of R
(D) Logarithm of R
8. The table below gives the values of $\tan x$ for $0.10 \leq x \leq 0.30$.

x	0.10	0.15	0.20	0.25	0.30
$\mathrm{y}=$ $\tan \mathrm{x}$	0.1003	0.1511	0.2027	0.2553	0.3093

$\tan 0.12=$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) 0.0205
(B) 0.1205
(C) 0.2662
(D) 0.3662
9. By Simpson's rule, If

$$
\int_{0}^{1} \frac{1}{1+x^{2}} d x=\frac{1}{12}[3.1+4(a+b)]
$$

when the interval $[0,1]$ is divided into 4 sub intervals and a and b are the values of $\frac{1}{1+\mathrm{x}^{2}}$ at two of its division points then
(A) $a=\frac{1}{1.0625}, b=\frac{1}{1.25}$
(B) $\mathrm{a}=\frac{1}{1.0625}, \mathrm{~b}=\frac{1}{1.5625}$
(C) $a=\frac{1}{1.25}, b=1$
(D) $\mathrm{a}=\frac{1}{1.5625}, \mathrm{~b}=\frac{1}{1.25}$
10. The value of $f(x)$ is given only at $x=0, f(0)=\frac{1}{3}, \frac{2}{3}, 1$. Which of the following can be used to evaluate $\int f(x) d x$ approximately. ?
(A) Trapezoídal Rule
(B) Simpson Rule
(C) Trapezoídal as well as Simpson rule
(D) none of these

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

11. If $u=3 x^{2} y z+2 y z^{3}+6 x^{4}$, then

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z} \text { is equal to- }
$$

(A) $6 x^{2} y z+4 x y^{3}+12 x^{4}$
(B) $3 x^{2} y z+2 y z^{3}+6 x^{4}$
(C) $12 x^{2} y z+6 y z^{3}+12 x^{4}$
(D) $12 x^{2} y z+8 y z^{3}+24 x^{4}$
12. The points of extrema of $f(x)=\int_{0}^{x} \frac{\sin t}{t} d t$ in the domain $x>0$ are
(A) $(2 n+1) \frac{\pi}{2} ; n=1,2, \ldots \ldots$
(B) $(4 n+1) \frac{\pi}{2} ; n=1,2, \ldots \ldots$
(C) $(2 n+1) \frac{\pi}{4} ; n=1,2, \ldots \ldots$
(D) $n \pi ; n=1,2 \ldots \ldots \ldots$
13. The value of the integral $\sum^{n} \int_{0}^{1} f(k-1+x) d x$ is
(A) $\int_{0}^{1} f(x) d x$
(B) $\int_{0}^{2} f(x) d x$
(C) $\int_{0}^{x} f(x) d x$
(D) $b \int_{0}^{1} f(x) d x$
14. The value of $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\int_{\pi / 2}^{x} t d t}{\sin (2 x-\pi)}$ is
(A)
(B)
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{8}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
15. If area bounded by the curves $y^{2}=4 a x$ and $y=m x$ is then the value of m is
(A) 2
(B) -2
(C) $\frac{1}{2}$
(D) None of these
16. Area bounded by curve $y=k \sin x$ between $x=\pi$ and $x=2 \pi$, is
(A) $2 k$ sq. unit
(B) 0
(C) $\frac{k^{2}}{2}$ sq.unit
(D) k sq. unit
17. The volume of the solid generated by revolving the astraid

$$
x^{2 / 3}+y^{2 / 3}=a^{2 / 3}
$$

about the x-axis is equal to-
(A) $\frac{16}{35} \pi a^{3}$
(B) $\frac{16}{105} \pi \mathrm{a}^{3}$
(C) $\frac{32}{105} \pi \mathrm{a}^{3}$
(D) None of these
18. The volume of the solid generated by the revolution of $r=2 a \cos \theta$ about the initial line is given by
(A) $\frac{2}{3} \pi a^{3}$
(B) $\frac{4}{3} \pi a^{3}$
(C) $\frac{8}{3} \pi a^{3}$
(D) None of these

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
19. The denominator of a fraction number is greater than 16 of the square of numerator, then least value of the number is
(A) $-1 / 4$
(B) $-1 / 8$
(C) $1 / 12$
(D) $1 / 16$
20. Evaluate wronskian of functions e^{x}, e^{-x} and $e^{2 x}$
(A) $6 e^{2 x}$
(B) $-6 e^{2 x}$
(C) $12 e^{2 x}$
(D) $-12 e^{2 x}$
21. The general solution of the differential equation $\frac{d^{4} y}{d x^{4}}-6 \frac{d^{3} y}{d x^{3}}+12 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}=0$ is-
(A) $y=c_{1}+\left[c_{2}+c_{3} x+c_{4} x^{2}\right] e^{2 x}$
(B) $y=\left[c_{1}+c_{2} x+c_{3} x^{2}\right] e^{2 x}$
(C) $y=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}$
(D) $y=c_{1}+c_{2} x^{2}+c_{3} x^{3}+c_{3} x^{4}$
22. Solution of the differential equation $(2 D+1)^{2} y=4 e^{-x / 2}$ is-
(A) $y=\left(c_{1}+c_{2} x\right) \quad e^{-x / 2}$
(B) $y=\left(c_{1}+c_{2} x+\frac{1}{2} x^{2}\right) e^{-x / 2}$
(C) $y=\left(c_{1}+c_{2} x+\frac{1}{4} x^{2}\right) e^{-x / 2}$
(D) None of these

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
23. What is the directional derivative of $f=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction $2 \hat{i}-\hat{j}-2 \hat{k}$?
(A) $\frac{30}{7}$
(B) $\frac{31}{7}$
(C) $\frac{33}{3}$
(D) $\frac{37}{3}$
24. Consider $f(x, y, z)=x^{2}-e^{x y}+z^{2}-1$
find gradient of $f(x y z)$ at $(1,0,1)$.
(A) $(2,-1,2)$
(B) $(0,0,0)$
(C) $(2,0,0)$
(D) $(0,-1,-1)$
25. The function f defined by $f(x)=(x+2) e^{-x}$ is
(A) Decreasing for all x
(B) Decreasing in $(f \infty,-1)$
(C) Increasing for all x
(D) Decreasing in $(-1, \infty)$ and increasing in $(-\infty,-1)$
26. The mapping betweenthe set of integers and the set of natural numbers is/are-
(1) Identity
(2) Injective
(3) Surjective
(4) Bijective

Choose the correct answer using the codes given below :
(A) (1) and (2)
(B) (1) and (3)
(C) (1) and (4)
(D) (2), (3) and (4)

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

[^1]27. Let a, b and c be arbitrary real numbers. Let A be the matrix
\[

\left($$
\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}
$$\right)
\]

Let I be the 3×3 identity matrix. Then
(A) $A^{2}-3 A+3 I=A^{-1}$
(B) $A^{2}+3 A+3 I=A^{-1}$
(C) $A^{2}+A+I=A^{-1}$
(D) A is not invertible.
28. Given matrix $A=\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$

Corresponding to highest eigenvalue the eigenvector is
(A) $\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$
(B) $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
(C) $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
(D)

29. The solution of set of constraints $x+2 y \geq 11,3 x+4 y \leq 30,2 x+5 y \leq 30, y \geq 0$ includes the point
(A) $(2,3)$
(B) $(3,2)$
(C) $(3,4)$
(D) $(4,3)$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

30. The maximum value of $P=6 x+8 y$ subject constraints $2 x+y \leq 30, x+2 y \leq 24$ and $x \geq 0, y \geq 0$ is
(A) 90
(B) 120
(C) 96
(D) 240

31 Two distinct numbers are select at random from the first twelve natural numbers. The probability that the sum will be divisible by 3 , is
(A) $\frac{1}{3}$
(B) $\frac{23}{66}$
(C) $\frac{1}{2}$
(D) none of these
32. Given that the sum of two non-negative quantities is 200 , the probability that their product is not less than $\frac{3}{4}$ times their greatest product value, is
(A) $\frac{7}{16}$
(B) $\frac{101}{201}$
(C)
(D) $\frac{10}{16}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
33. Certain corresponding value of x and $\log _{10} x$ are (300, 2,.4771), (304, 2.4829), (305, $2.4843)$ and $(307,2.4871) \log _{10} 301$ will be
(A) 1.4786
(B) 2.4786
(C) 3.4786
(D) 4.47865
34. If $y_{1}=4, y_{3}=12, y_{4}=19$ and $y_{x}=7$, then x will be
(A) 1.42
(B) 1.68
(C) 1.86
(D) 1.98
35. The equation $x^{3}-3 x+4=0$ has only one real root. What is its first approximate value as obtained by the method of false position in $(-3,-2)$?
(A) -2.125
(B) 2.125
(C) -2.812
(D) 2.812
36. If a and a +h are two consecutive approximate roots of the equation $\mathrm{f}(\mathrm{x})=0$ as obtained by Newtons Method, then h equal to
(A)
$f^{\prime}(a)$
(B) $\frac{f^{\prime}(a)}{f(a)}$
(C) $-\frac{f(a)}{f(a)}$
(D) $-\frac{f(a)}{f^{\prime}(a)}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

37. If $y=4 x-5$ is tangent to the curve $y^{2}=p x^{3}+q$ at $(2,3)$, then
(A) $p=2, q=-7$
(B) $p=-2, q=7$
(C) $p=-2, q=-7$
(D) $p=2, q=7$
38. If $y=a \log |x|+b x^{2}+x$ has its extreme values at $x=-1$ and $x=2$, then
(A) $a=2, b=-1$
(B) $a=2, b=-1 / 2$
(C) $a=-2, b=-1 / 2$
(D) None of these
39. Let be a differentiable function having $f(2)=6, '^{\prime}(2)=\left(\frac{1}{48}\right)$. Then $\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{4 t^{3}}{x-2}$ dt equals
(A) 12
(B) 18
(C) 24
(D) 36
40. Let $\frac{d}{d x} F(x) \wedge\left(\frac{e^{\sin x}}{x}\right) ; x>0$. If $\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} d x=F(k)-F(1)$, then one of the possible value of k, is
(A) 15
(B) 16
(C) 63
(D) 64

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

41. The area bounded by the curves $y=\log _{e} x$ and $y=\left(\log _{e} x\right)^{2}$ is
(A) $3-\mathrm{e}$
(B) $e-3$
(C) $\frac{1}{2}(3-e)$
(D) $\frac{1}{2}(\mathrm{e}-3)$
42. The sine and cosine curves intersects infinitely manytimes giving bounded regions of equal areas. The area of one of such region is
(A) $\sqrt{2}$
(B) $2 \sqrt{2}$
(C) $3 \sqrt{2}$
(D) $4 \sqrt{2}$
43. The volume of the solid generated by the revolution of the cardioid $r=a(1+\cos \theta)$ about the initial line is given by-
(A) $2 \pi a^{3}$
(B) $\frac{2}{3}$
(C) $\frac{4}{3} \pi a^{3}$
(D) $\frac{8}{3} \operatorname{ta}^{3}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

44. The segment of the circle $x^{2}+y^{2}=a^{2}$ cut off by the chord $x=b(0<b<a)$ revolves about the x-axis and generated the solid known as a segment of a sphere. The volume of this solid is-
(A) $\frac{\pi(a-b)^{2}(2 a+b)}{3}$
(B) $\frac{\pi(2 a-b)^{2}(a+b)}{3}$
(C) $\frac{\pi(2 a+b)^{2}(a-b)}{3}$
(D) $\frac{\pi(a+b)^{2}(2 a-b)}{3}$
45. The orthogonal trajectory of the family $r^{n} \sin n \theta=a^{n}$, is
(A) $r^{n} \sin n \theta=\theta$
(B) $r^{n} \sin n \theta=c$
(C) $r^{n} \sin \theta=c$
(D) $r^{n} \cos n \theta=c$
46. Solve $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$
(A) $e^{x}\left(x^{2}+y^{2}+c\right)=0$
(B) $e^{x}\left(x^{2}+y^{2}\right)=c$
(C) $\left(x^{2}+y^{2}\right)=c e^{x}$
(D) None
47. The general solution of the differential equation $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=\frac{e^{2 x}}{x}$ is :

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(A) $\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}=\mathrm{x} \log \mathrm{x}-\frac{\mathrm{x}^{2}}{2} \mathrm{e}^{2 \mathrm{x}}$
(B) $\left(C_{1}+C_{2} x+x \log x-x\right) e^{2 x}$
(C) $\mathrm{C}_{1} \mathrm{e}^{2 x}+\mathrm{C}_{2} \mathrm{e}^{-2 x}+x \mathrm{e}^{2 x} \log x-\frac{\mathrm{x}^{2}}{2}$
(D) $\mathrm{C}_{1} \mathrm{e}^{2 \mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{xe} \mathrm{e}^{2 \mathrm{x}} \log \mathrm{x}-\mathrm{x}$
48. $y_{1}=\sin 3 x$ and $y_{2}=\cos 3 x$ are two solutions of ,are
(A) Linearly dependent
(B) Linearly independent
(C) We can't say
(D) none of these
49. Find the directional derivatives of $f=x y z^{2}$ at $(1,0,3)$ in the direction of the vector \mathbf{i} $\mathbf{j}+\mathbf{k}$.
(A) $\frac{a}{\sqrt{3}}$
(B) $3 \sqrt{3}$
(C) $-3 \sqrt{3}$
(D) 0
50. Find the directional directive of $P=4 e^{2 x^{2}-y-2^{2}}$ at (1,1,-1) point in a direction toward the point $(-3,5,6)$.
(A) -4
(B) 5
(C) $4 \sqrt{70}$
(D) none of these

COMPUTER AWARENESS(51-70)

51. Multiplication of numbers (13) 10 and (14) 10 in binary form will be

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(A) 11000110
(B) 10100110
(C) 10111110
(D) 10110110
52. What is 2 's complement for 5 in 8 -bit system ?
(A) 00000011
(B) 10000011
(C) 11111011
(D) 1111001
53. Convert 8-bit 2's complement binary number into decimal for

$$
(11000001)_{2}=(?)_{10}
$$

(A) $(193)_{10}$
(B) $(64)_{10}$
(C) $-(64)_{10}$
(D) can't determine
54. Find the missing values of $P \& Q$ from the following -

$$
(69.5)_{10}=(P)_{16}=(Q)_{8}
$$

(A) $(45.6)_{16} \cdot(54.8)_{8}$
(B) $(54.8)_{16},(501.4)_{8}$
(C) $(45.8)_{16},(105.4)_{8}$
(D) $(54.6)_{16},(101.6)_{8}$
55. Find the addition of :-

$$
(273)_{8}+(111000111)_{2}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(A) $(1379)_{8}$
(B) $(1486)_{8}$
(C) $(1202)_{8}$
(D) $(1101)_{8}$
56. Which of the following is used to assign multiple blocks of memory of same size dynamically?
(A) malloc ()
(B) calloc ()
(C) realloc ()
(D) none of the above
57. Which of the following can not be referred as valid file lopunction?
(A) getc ()
(B) putc ()
(C) putw ()
(D) All above are valid functions.
58. What "FILE" is being denoted in the following ' c ' code FILE * P ;
(A) Data structure
(B) Data Type
(C) Erroneous code statement
(D) Special pointers Reference..
59. Find the odd one out -
(A) isanum ()

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
(B) isdigit ()
(C) $\exp ()$
(D) toascii ()
60. Find the equal form of the following given Boolean expression.

$$
F=A B \oplus A C
$$

(A) $A B(\bar{A}+\bar{C})+(\bar{A}+\bar{B}) A C$
(B) $A B \cdot \overline{A C}+\overline{A B} \cdot B C$
(C) $A(B \oplus C)$
(D) All above given are same
61. Determine the output for the following logic circuit diagram.

(A) $A \oplus B$
(B) $\mathrm{A} \odot \mathrm{B}$
(C) $A \uparrow B$
(D) $A \downarrow B$
62. Which is the logic circuit diagram for the given Boolean Function?

$$
F=\overline{\mathrm{AB}}+\mathrm{A}+\overline{\mathrm{B}+\mathrm{C}}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(B)

(C) Either (A) or (B)
(D) None of the above
63. Find the complement of the given Boolean expression -

$$
F=x \cdot(y \cdot z+\bar{y} \cdot \bar{z})
$$

(A) $F=\bar{x}+((\bar{y}+\bar{z}) \cdot(y+z))$
(B) $F=\bar{x} \cdot((y+z) \cdot(\bar{y} \cdot \bar{z}))$
(C) $F=\bar{x} \cdot((y \cdot z)+(\overline{y \cdot z}))$
(D) $F=\bar{x}+((\overline{y+z}) \cdot(y+z))$
64. What is dual form for $(\bar{A} \cdot B+A \bar{B})$?
(A) $(A+B)(\overline{A+B})$
(B) $(\mathrm{AB})+(\widehat{\mathrm{AB}})$
(C) $(\bar{A}+B) \cdot(A+\bar{B})$
(D) $(\overrightarrow{A B})(A B)$
65. Convert 3476_{10} to hex.
(A) $(49 B)_{16}$
(B) (D49) 16

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) $(\mathrm{D} 94) 16$
(D) $(\mathrm{B} 94)_{16}$
66. Multiply (0.5) \& (-0.5) and show the result in binary form.
(A) 11110001
(B) 10001000
(C) 11110000
(D) 10111000
67. What type of approach does a 'stack' data structure prefers to operate on ?
(A) FIFO
(B) FCFS
(C) LCFS
(D) LIFO
68. Which statement will you add in the following program to work it correctly ?

> \# include <stdio.h> main ()
> \{ printf ("\% f, n", log (36.0)) return 0;
> \}
(A) \# include <conio. $h>$
(B) \# inelude < stdlib.h>
(C) \# include < math.h>
(D) \# include <string.h>
69. How many times the while loop will get executed if a short int is 2 byte wide ?
\# include < stdio. h>

$$
\begin{gathered}
\text { main () } \\
\{\operatorname{int} j=1 ;
\end{gathered}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

```
    while (j < = 255)
    { printf (" % c % d\n", j , j) ;
    j ++;
}
    return O;
}
```

(A) Infinite times
(B) 256 times
(C) 255 times
(D) 254 times
70. Add C_{16} \& $-7 \mathrm{~B}_{16}$ and find the result in binary from-
(A) 111001101
(B) 100011001
(C) 101001001
(D) 110001001

REASONING(71-90)
Direction (71-73): Find out the missing term in the given series below.
71. $2,1,2,4,4,5,6,7,8,8,10,11$ (?)
(A) 12
(B) 11
(C) 10
(D) 9
72. 11, 10, (?), 100, 1001, 1000, 10001
(A) 101
(B) 110
(C) 111

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

(D) 1101
73. 7, 12, 19, (?), 39
(A) 28
(B) 26
(C) 24
(D) 29
74. Which one of the given responses would be a meaningfut order of the following?
(1) Infant, (2) Old, (3) Adult, (4) Adolescent, (5) Child.
(A) $5,4,3,2,1$
(B) $3,4,2,1,5$
(C) $1,5,4,3,2$
(D) $2,3,4,5,1$
75. Cattle : Herd : : sheep : ?
(A) Flock
(B) Swarm
(C) Shoal
(D) Mob
76. If Tall is equivalent to circle, Armymen to triangle and Strong to square, indicate which number will represent strong armymen?

[^2]
(A) 3
(B) 4
(C) 5
(D) 6

Direction (Qs. 77-80) Read the following information carefully and answer the question below.
Δ means 'is greater than', \% means 'is lesser than', \square means 'is equal to', = means 'is not equal to', + means 'is a little more than', \times means 'is a little less than'.
77. If $c=a$ and $a=b$, then
(A) $b \Delta_{a}$
(B) $c a$
(C) $b=a$
(D) gan't say
78. If $a \times b$ and b \square c, then
(A) $c+a$
(B) $b \Delta_{c}$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(C) $a+c$
(D) $c \square a$
79. If $c \% b$ and $b \times a$, then
(A) a Δ_{c}
(B) \square_{a}
(C) b \triangle c
(D) c \triangle a
80. If $a c+b c$ then
(A) a \square_{C}
(B) b Δ_{c}
(C) $\mathrm{c} \Delta \mathrm{b}$
(D) $\mathrm{b} \% \mathrm{a}$
81. In a certain code language, 'kew xax huma deko' means 'she is eating apples', 'kew tepoqua' means 'she sells toys' and 'su lim deko' means 'I like apples'. Which word in that language mean she and apples
(A) xas and deko
(B) xas and kew
(C) kew and deko
(D) kew and xas
82. If gnr tag zog qmp' stands for 'Seoul Olympic Organising Committee,'hydo gnr emf' stands for 'Sunmer Olympic Games' and 'esm sdr hyto' stands for 'Modern Games History', which would be the code for Summer?
(A) hyto
(B) gnr
(C) emf

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(D) zog

Directions(83-85) - Read the following information carefully and answer the questions given below-

The following are the conditions for interview of the candidates selected for promotion from Assistants to officers cadre in the P.R.S. Group of Industries Ltd. The candidates called for interview-
(i) Graduate with a minimum of 50% of marks.
(ii) He must have minimum five year's experience in the clerical cadre.
(iii) He must have at least ' C ' rating in each of quality of work and speed of work for the last three years. [For this, of the five points A, B, C, D and E. A is the lowest and E is the highest, on which depends on Performance Appraisal Report (PAR)].
(iv) He must have at least ' D ' rating in each of dependability and flexibility in approach towards work during last three years. (For this, of the seven points A, B, C, D, E, F and G. A is the lowest and G is 䉼e highest which depends on PAR).

Even then the candidates fulfils all eligibility requirement except-
(a) The (i) of the above but he must have passsed graduation and he must have secured minimum ' E ' rating on dependability in PAR during last three years, then his case can be forwarded to the Asstt. General Manager (Personnel).
(b) The (ii) of the above, but he must have at least three years experience in the clerical cadre and he must have atleast ' D ' ration in quality of work during last three years, then his case can be forwarded to Dy. General Manager (Personnel).

Based on these eligibility requirements and in the information given below you have to determine action to be taken in each of these cases. You have not to form any preconception of any type. If the data given in determining the action to be taken are inadequate, your answer will be the 'The data are inadequate'. All the candidates fulfill the age eligibility requirement if there is any.
Give answer(if decision is)

[^3](A) The data are inadequate
(B) Should not be selected
(C) Selected for interview
(D) Forwarded to Asstt. General Manager
(E) Forwarded to the Dy. General Manager
83. Mohd. Seikh is a talented science post-graduate who has secured 63% and 55% marks in graduation and post-graduation respectively. He has secured ' E ' rating on dependability and flexibility in the last four years. He has secured ' C rating in quality of work and speed of work. He joined the bank four years back.
84. Kiran Bala is a young and active assistant who after having done graduation joined this organisation six years back. During the last four years she has secured ' D ' rating in quality of work and ' C ' rating in speed of work. Sheis one of the leaders of the clerical cadre employees. During the last 5 years she has obtained ' D ' rating on flexibility.
85. Mandar Bhave has passed his graduation in science and Diploma in Business Management with 8% and 62% mark respectively. He is a good player of chess. His ratings on P.A.R. are ' D for dependability and flexibility where as he has ' C ' rating for quality of work'and ' B ' rating for 'speed of work' for the last 4 years.
86. Fragile: Hardy
(A) awkward : clumsy
(B) orthodox: traditional
(C) amateur : professional
(D) cautious : flippant
87. Chapter: Book
(A) alcove : nook

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) paragraph : sentence
(C) Page : rip
(D) room : house
88. Philanthropist : Generous
(A) curator : optimistic
(B) exhibitionist : excessive
(C) chef : hungry
(D) pacifist : unwarlike
89. Bolster: Support
(A) goad : urge
(B) deny : approve
(C) grovel : hack
(D) disagree : approve
90. $10,20,10,9,21,11,8,22,12$?
(A) 5
(B) 7
(C) 8
(D) 11

GENERAL ENGLISH(91-100)

Direction(91-93): Write the indirect speech of the given direct speech.
91. Ronit said, 'He must be guilty!'
(A) Ronit said that he must have been guilty

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) Ronit said that he must have be guilty
(C) Ronit said that he must has been guilty
(D) None of these
92. Aditi asked her, 'How long have you lived here?'
(A) Aditi asked her how long she has lived there
(B) Aditi asked her how long she lived there
(C) Aditi asked her how long she had lived there
(D) None of these
93. He said, 'I must get going. Otherwise, I'm going to be late.
(A) He told me he had to get going. Otherwise, he was going to be late
(B) He told me he had to get going. Otherwise, I was going to be late
(C) He told me he has to get going. Otherwise, he was going to be late
(D) None of these
94. What is the antonym of EXECRATE ?
(A) loathe
(B) despise
(C) adore
(D) abhor
95. What is the antonym of SYCOPHANT ?
(A) servile
(B) first
(C) fawning
(D) supercilious
96. What is the synonym of Tart?
(A) law

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) acid
(C) angry
(D) desirable
97. What is the synonym of Corner ?
(A) display
(B) Nook
(C) paint
(D) hurry

Direction for questions (98): In the following question, a set of four words are given, marked (A) to (D). In each set a word has been spelt in four different ways, one of which is correct. Choose the word correctly spelt.
98. (A) Dolurous
(B) Dolorous
(C) Doloreus
(D) Delorious
99. Each report starts with a statement from the directors summarizing the growth pattern of the organisation over the past year and outlines the company's \qquad .
(A) future prospects
(B) plans
(C) ideas and ideals
(D) associates
100. is to be distinguished from the activity of desire itself, as a stimulus or \qquad to its determination.
(A) Aversion provocation
(B) Concupiscence ... incitement
(C) Urging ... node
(D) Motive ... bidding

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

ANSWER KEY

1.(B) A be an $n \times n$ invertible matrix with integer entries and A^{-1} also has only Integer entries

$$
\text { Since } A^{-1}=\frac{\operatorname{adj}(A)}{|A|}
$$

If A^{-1} have each entry integer then adj A must contain each entry divided exactly by $|\mathrm{A}|$ or, $|\mathrm{A}|= \pm 1$

But It is not possible that each entry of adj (A) divided exactly by $|A|$
2.(C)

then it's characteristic equation is

$$
\left|\begin{array}{cc}
\cos \theta-\lambda & -\sin \theta \\
\sin \theta & \cos \theta-\lambda
\end{array}\right|=0
$$

$(\cos \theta-\lambda)^{2}+\sin ^{2} \theta=0$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
\lambda^{2}-2 \lambda \cos \theta+1 & =0 \\
\lambda & =\frac{2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-4}}{2} \\
& =\cos \theta \pm \sqrt{\cos ^{2} \theta-1} \\
& =\cos \theta \pm i \sin \theta \\
& =e^{i \theta}, e^{-i \theta} \quad\left[\because e^{i \theta}=\cos \theta+i \sin \theta\right. \text { and } \\
& \left.\quad e^{i \theta}=\cos \theta-i \sin \theta\right]
\end{aligned}
$$

3.(A) $\frac{\cos 9^{\circ}+\sin 9^{\circ}}{\cos 9^{\circ}-\sin 9^{\circ}}$

$$
\begin{aligned}
& =\frac{1+\tan 9^{\circ}}{1-\tan 9^{\circ}} \\
& =\tan \left(45^{\circ}+9^{\circ}\right) \leq \tan 54^{\circ} .
\end{aligned}
$$

4.(B)

Here feasible region has vertices $(0,0) ;(4,0) ;(4,3) ;(2,6)$ and $(0,6)$.
\therefore Max z at $(2,6)=3(2)+5(6)=36$.
5.(A) Let X denote the number of tails. Then X is a binomial variate with parameters $n=$ 100 and $\mathrm{p}=\frac{1}{2}$. Therefore, $\mathrm{P}(\mathrm{X}=\mathrm{r})={ }^{100} \mathrm{C}_{\mathrm{r}}\left(\frac{1}{2}\right)^{100}, \mathrm{r}=0,1,2, \ldots \ldots ., 100$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc

Required probability

$$
\begin{aligned}
& =P(X=1)+P(X=3)+\ldots .+P(X=99) \\
& =\cdot\left(\frac{1}{2}\right)^{100}\left[{ }^{100} \mathrm{C}_{1}+{ }^{100} \mathrm{C}_{3}+\ldots+{ }^{100} \mathrm{C}_{99}\right]=\frac{1}{2^{100}\left[2^{99}\right]=\frac{1}{2}}
\end{aligned}
$$

Hence (A) is correct answer.
6.(A) The required probability

$$
\begin{aligned}
& =P(A \bar{B} \cup \bar{A} B)=P(A) P(\bar{B})+P(\bar{A}) P(B) \\
& =\frac{3}{10}\left(1-\frac{2}{5}\right)+\left(1-\frac{3}{10}\right) \frac{2}{5}=\frac{23}{50}
\end{aligned}
$$

Hence (A) is the correct answer.
7.(C) According to Newton-Raphson iteration,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Let us convert the given expression to above form

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n}}{2}+\frac{R}{2 x_{n}} \\
& =x_{n}-\frac{x_{n}}{2}+\frac{R}{2 x_{n}}
\end{aligned}
$$

$$
=x_{n}-\left(\frac{x_{n}-R}{2 x_{n}}\right)
$$

$$
f(x)=x^{2}-R \text { and } f^{\prime}(x)=2 x
$$

$$
\begin{array}{ll}
\Rightarrow & x^{2}=R \\
\Rightarrow & x=\sqrt{R}
\end{array}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
8.(B) Differences table

9.(B) From $\mathrm{h}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}}$, we have $\mathrm{h}=\frac{1-0}{4}=0.25$

x	0	0.25	0.5	0.75	1
$f(x)=\frac{1}{1+x^{2}}$	1	$\frac{1}{1.0625}$	$\frac{1}{1.25}$	$\frac{1}{1.5625}$	$\frac{1}{2}$
Ordinate	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}

By Simpson's Rule

$$
\begin{aligned}
\int_{0}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx} & =\frac{\mathrm{h}}{3}\left[\left(\mathrm{y}_{0}+\mathrm{y}_{4}\right)+2 \mathrm{y}_{2}+4\left(\mathrm{y}_{1}+\mathrm{y}_{3}\right)\right] \\
& =\frac{1}{12}\left[\frac{3}{2}+2(0.8)+4\left(\frac{1}{1.0625}+\frac{1}{1.5625}\right)\right]
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Comparing with given question

$$
a=\frac{1}{1.0625}, b=\frac{1}{1.5625}
$$

Hence (B) is correct answer.
10.(A) Numbers of ordinates are $4\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ Numbers of subdivisions $=3$ (odd division)
"Only TRAPEZOIDAL RULE" can be used to evaluate

$$
\int_{0}^{1} f(x) d x
$$

Because Simpson's rule can be used only for even subdivisions \& Trapezoidal can be applied for any number of divisions (even, odd both).

Hence (A) is correct answer.
11.(D) Given that

$$
u=3 x^{2} y z+2 y z^{3}+6 x^{4}
$$

This is homogeneous function of degree 4
\therefore By Euler Theorem.
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=4 u$
$=4\left(3 x^{2} y z+2 y z^{3}+6 x^{4}\right)$
$=12 x^{2} y z+8 y z^{3}+24 x^{4}$
12.(D) $f(x)=\int_{0}^{x} \frac{\sin t}{t} d t \rightarrow f^{\prime}(x)=\frac{\sin x}{x}$

Put $f^{\prime}(x)=0 \Rightarrow \frac{\sin x}{x}=0 \Rightarrow \sin x=0$
$x=n \pi, n=1,2,3, \ldots \ldots$.
13.(C) Let $I=\int_{0}^{1} f(k-1+x) d x$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
$\Rightarrow \mathrm{I}=\int_{\mathrm{k}-1}^{\mathrm{k}} \mathrm{f}(\mathrm{t}) \mathrm{dt}$, where $\mathrm{t}=\mathrm{k}-1+\mathrm{x} \Rightarrow \mathrm{I}=\int_{\mathrm{k}-1}^{\mathrm{k}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
$\therefore \sum_{k=1}^{n} \int_{k-1}^{k} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\ldots . .+\int_{n-1}^{n} f(x) d x=\int_{0}^{n} f(x) d x$
14.(C)
$y=\lim _{x \rightarrow \pi / 2} \frac{\int_{\pi / 2}^{x} \mathrm{t} . \mathrm{dt}}{\sin (2 x-\pi)} \Rightarrow y=\lim _{x \rightarrow \pi / 2} \frac{\left[\frac{t^{2}}{2}\right]_{\pi / 2}^{x}}{\sin (2 x-\pi)}$
$y=\lim _{x \rightarrow \pi / 2} \frac{\left(\frac{x^{2}}{2}-\frac{\pi^{2}}{8}\right)}{\sin (2 x-\pi)} \Rightarrow y=\lim _{x \rightarrow \pi / 2} \frac{1}{8} \frac{\left(4 x^{2}-\pi^{2}\right)}{\sin (2 x-\pi)}$
$y=\lim _{x \rightarrow \pi / 2} \frac{1}{8} \frac{(2 x-\pi)(2 x+\pi)}{\sin (2 x-\pi)}$
$y=\frac{1}{8} \frac{\lim _{x \rightarrow \pi / 2}(2 x+\pi)}{\lim _{x \rightarrow \pi / 2} \frac{\sin (2 x-\pi)}{(2 x-\pi)}}, \quad\left(\because \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1\right)$
$y=\frac{1}{8} \times 2 \pi=\frac{\pi}{4}$.
15.(A) The two curves $y^{2}=4 a x$ and $y=m \chi$ intersect at $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$ and the area enclosed by the two curves is given by $\int_{0}^{4 a / m^{2}}(\sqrt{4 a x}-m x) d x$.

16.(A) Required area $=\mathrm{k} \int_{\pi}^{2 \pi} \sin \mathrm{xdx}=\mathrm{k}[-\cos \mathrm{x}]_{\pi}^{2 \pi}=-2 \mathrm{k}$

Hence, area $=2 k$ sq. unit.
17.(C)

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

The required volume is generated by revolving the area $A B A \cdot O A$ about x-axis $=2 \times$ volume generated by revolving the area ABOA about x-axis
$\therefore \quad$ Required Area $=2 \int_{0}^{a} \pi y^{2} d x$

$$
\begin{aligned}
& =2 \int_{0}^{a} \pi\left(a^{2 / 3}-x^{2 / 3}\right)^{3} d x \\
& =2 \pi \int_{0}^{\pi / 2} a^{2} \cos ^{6} \theta \cdot 3 a \sin ^{2} \theta \cos \theta d \theta \\
& =6 \pi a^{3} \int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{7} \theta d \theta \\
& =6 \pi a^{3} \frac{\frac{3}{2} \sqrt{4}}{2 \frac{11}{2}}=6 \pi a^{3} \cdot \frac{1}{2} \cdot \sqrt{\pi} \cdot 3 \cdot \frac{9}{2} \cdot \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi} \\
& \\
& =3 \pi a^{3} \theta
\end{aligned}
$$

$\therefore \quad$ The correct answer is (C).
18.(B) The equation of the given curve is

$$
r=2 a \cos \theta,
$$

which is a circle with centre $(a, 0)$ and radius a

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

\therefore The required volume

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \frac{2}{3} \pi r^{3} \sin \theta d \theta \\
& =\frac{2}{3} \pi \int_{0}^{\pi / 2}(2 \mathrm{a} \cos \theta)^{3} \sin \theta \mathrm{~d} \theta \\
& =\frac{16 \pi \mathrm{a}^{3}}{3} \int_{0}^{\pi / 2} \cos ^{3} \theta \sin \theta \mathrm{~d} \theta \\
& =\frac{16 \pi \mathrm{a}^{3}}{3} \cdot \frac{\sqrt{\frac{4}{2}} \frac{2}{2}}{2} \\
& =\frac{16 \pi \mathrm{a}^{3}}{3} \cdot \frac{1}{2 \cdot 2 \cdot 1}=\frac{4 \pi \mathrm{a}^{3}}{3}
\end{aligned}
$$

19.(B) The function $f(x)$

$$
\begin{align*}
\Rightarrow f^{\prime}(x) & =\frac{\left(x^{2}+16\right) \cdot 1-x \cdot(2 x)}{\left(x^{2}+16\right)^{2}} \\
& =\frac{x^{2}+16-2 x^{2}}{\left(x^{2}+16\right)^{2}}=\frac{16-x^{2}}{\left(x^{2}+16\right)^{2}} \tag{i}
\end{align*}
$$

Put $f^{\prime}(x)=0 \Rightarrow 16-x^{2}=0 \Rightarrow x=4,-4$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Again, $f "(x)=\frac{\left(x^{2}+16\right)^{2}(-2 x)-\left(16-x^{2}\right) 2\left(x^{2}+16\right) 2 x}{\left(x^{2}+16\right)^{4}}$
At $\mathrm{x}=4, \mathrm{f}^{\prime \prime}(\mathrm{x})<0$ and at $\mathrm{x}=-4, \mathrm{f}^{\prime \prime}(\mathrm{x})>0$
\therefore at $x=-4 f(x)$ has least value
\therefore Least value of $f(x)=\frac{-4}{16+16}=-\frac{1}{8}$.
20.(B) $\quad W\left(e^{x}, e^{-x}, e^{2 x}\right)$
$=\left|\begin{array}{ccc}e^{x} & e^{-x} & e^{2 x} \\ \frac{d}{d x}\left(e^{x}\right) & \frac{d}{d x}\left(e^{-x}\right) & \frac{d}{d x}\left(e^{2 x}\right) \\ \frac{d^{2}}{d x^{2}}\left(e^{x}\right) & \frac{d^{2}}{d x^{2}}\left(e^{-x}\right) & \frac{d^{2}}{d x^{2}}\left(e^{2 x}\right)\end{array}\right|$
$=\left|\begin{array}{ccc}e^{x} & e^{-x} & e^{2 x} \\ e^{x} & -e^{-x} & 2 e^{2 x} \\ e^{x} & e^{-x} & 4 e^{2 x}\end{array}\right|$
$=e^{x} \cdot e^{-x} \cdot e^{2 x}\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 4\end{array}\right|$
$=e^{2 x}\left|\begin{array}{ccc}1 & 0 & 0 \\ 1 & -2 & 1 \\ 1 & 0 & 3\end{array}\right| \begin{gathered}\text { applying } C_{2} \rightarrow C_{2}-C_{1} \\ \text { and } C_{3} \rightarrow C_{3}-C_{1}\end{gathered}$
$-6 e^{2 x}$, on expanding w.r. to R_{1}.
21.(A) The given equation is

$$
\left(D^{4}-6 D^{3}+12 D^{2}-8 D\right) y=0
$$

or,
$D(D-2)^{3} y=0$
A.E. is $m(m-2)^{3}=0$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
m=0,2,2,2
$$

\therefore The solution is

$$
y=C_{1}+\left[C_{2}+C_{3} x+C_{4} x^{2}\right] e^{2 x}
$$

22.(B) A.E. is $(2 m+1)^{2}=0 \Rightarrow m=-1 / 2,-1 / 2$
\therefore C.F. is $\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \mathrm{e}^{-\mathrm{x} / 2}$

$$
\begin{aligned}
\text { P.I. } & =\frac{1}{(2 D+1)^{2}} 4 \mathrm{e}^{-x / 2} \\
& =x \frac{1}{4(2 \mathrm{D}+1)} 4 \mathrm{e}^{-x / 2} \\
& =x \cdot \frac{1}{2 \mathrm{D}+1} \mathrm{e}^{-x / 2} \\
& =x^{2} \cdot \frac{1}{2} \cdot e^{-x / 2} \\
& =\frac{1}{2} x^{2} e^{-x / 2}
\end{aligned}
$$

\therefore Required solution is

$$
y=\left(c_{1}+c_{2} x+\frac{1}{2} x^{2}\right) e^{-x / 2}
$$

23.(D)
$\nabla \phi=\nabla\left(x^{2} y z+4 x z^{2}\right)$

$$
\begin{aligned}
& 2 x y z \hat{i}+\left(x^{2} z\right)+\left(x^{2} y+8 x z\right) \hat{k} \\
& =-8 \hat{i}-\hat{j}-10 \hat{k} \text { at }(1,-2,-1)
\end{aligned}
$$

the unit vector in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$ is

$$
\hat{a}=\frac{2 \hat{i}-\hat{j}-2 \hat{k}}{\sqrt{2^{2}+4^{2}+(-2)^{2}}}=\frac{2}{3} \hat{i}-\frac{1}{3} \hat{j}-\frac{2}{3} \hat{k}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$\nabla \phi \cdot \hat{\mathrm{a}}=(8 \hat{\mathrm{i}}-\hat{\mathrm{j}}-10 \hat{\mathrm{k}})\left(\frac{2}{3} \hat{\mathrm{i}}-\frac{1}{3} \hat{\mathrm{j}}-\frac{2}{3} \hat{\mathrm{k}}\right)$

$$
=\frac{16}{3}+\frac{1}{3}+\frac{20}{3}=\frac{37}{3}
$$

24.(A) If $f(x, y, z)=x^{2}-e^{x y}+z^{2}-1$

$$
\begin{aligned}
& \nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\
& \frac{\partial f}{\partial x}=2 x-y e^{x y} \Rightarrow\left(\frac{\partial f}{\partial x}\right)_{(1,0,1)}=2 \\
& \frac{\partial f}{\partial y}=-x e^{x y} \Rightarrow\left(\frac{\partial f}{\partial y}\right)_{(1,0,1)}=-1 \\
& \frac{\partial f}{\partial z}=2 z \Rightarrow\left(\frac{\partial f}{\partial z}\right)_{(1,0,1)}=2
\end{aligned}
$$

Then $\nabla f=(2,-1,2)$
25.(D) $f(x)=(x+2) e^{-x}$
$f^{\prime}(x)=e^{-x}-e^{-x}(x+2)$
$f^{\prime}(x)=-e^{-x}[x+1]$
For increasing: $-e^{-x}(x+y)>0$ or $e^{-x}(x+1)<0$

$$
e^{-x}>0(x+1)<0
$$

$x \in(-\infty, \infty)$ and $x \in(-\infty,-1)$

$\therefore x \in(-\infty,-1)$

Hence, the function is increasing in $(-\infty,-1)$
For decreasing, $-\mathrm{e}^{-\mathrm{x}}(\mathrm{x}+1)<0$ or $\mathrm{e}^{-\mathrm{x}}(\mathrm{x}+1)>0, \mathrm{x} \in(-1, \infty)$
Hence the function is decreasing in $(-1, \infty)$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
26.(D) Consider the mapping
$\mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z}$ defined as
$f(n)=(n-1) / 2$ when n is odd
$f(n)=-n / 2$ when n is even
Here, $\mathrm{f}\left(\mathrm{n}_{1}\right)=\mathrm{f}\left(\mathrm{n}_{2}\right) \Rightarrow \mathrm{n}_{1}=\mathrm{n}_{2}$
$\therefore \mathrm{f}$ is injective
since every element of Z is the f-image of the elements of N.
f is surjective
$\therefore \mathrm{f}$ is bijective
\therefore The correct answer is (D).
27.(A)

$$
A=\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

it's characteristic equation $|A-\lambda I|=0$

$$
\Rightarrow \quad\left|\begin{array}{ccc}
1-\lambda & a & b \\
0 & 1-\lambda & c \\
0 & 0 & 1-\lambda
\end{array}\right|=0
$$

$$
(1-\lambda)\left[(1-x)^{2}\right]=0
$$

$$
\Rightarrow \quad(1-\lambda)^{3}=0
$$

$$
-\lambda^{3}+3 \lambda^{2}-3 \lambda+1=0
$$

By C-H theorem

$$
\begin{aligned}
& -A^{3}+3 A^{2}-3 A+I=0 \\
& \Rightarrow \quad A^{3}-3 A^{2}+3 A=I \quad\{I \text { is identity matrix }\}
\end{aligned}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\Rightarrow A^{-1}=A^{2}-3 A+3 I
$$

Hence (A) is correct option
28.(D) Let the initial eigenvector be $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=X^{(0)}$. Then we have

$$
A X^{(0)}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=X^{(1)}(\text { say })
$$

Hence an approximate eigenvalue is 1 and an approximate eigenvector is $X^{(1)}$.

$$
\therefore \quad \quad \mathrm{AX}^{(1)}=\left[\begin{array}{lll}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
7 \\
3 \\
0
\end{array}\right]=3\left[\begin{array}{c}
23 \\
1 \\
0
\end{array}\right]
$$

From which, we get $X^{(2)}=\left[\begin{array}{c}23 \\ 1 \\ 0\end{array}\right]$ and that an approximate eigenvalue is 3 .
Repeating the above procedure, we obtain successively

$$
4\left[\begin{array}{c}
2.1 \\
1.1 \\
0
\end{array}\right] ; 4\left[\begin{array}{c}
2.1 \\
1.1 \\
0
\end{array}\right] ;\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] ; 4\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] ; 4\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] .
$$

It follows that the largest eigenvalue is 4 and the corresponding eigen vector is $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
29.(C)

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Obviously, solution set of constraints includes the point $(3,4)$.
Alter : directly put the option in the given equation and check. Answer (c) satisfies.
30.(B) Feasible region of constraints is shown in graph

Extreme points are, $(0,0),(15,0),(0,12)$ and $(12,6)$.

$P_{(0,0)}=0, P_{(15,0)}=90, P_{(0,2)}=16$
Clearly maximum P is 120 at $(12,6)$.
Hence (B) is the correct answer.
31.(A) Let $E_{3}=$ the event of the sum being 3 .

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Similarly, $\mathrm{E}_{6}, \mathrm{E}_{9}, \mathrm{E}_{12}, \mathrm{E}_{15}, \mathrm{E}_{18}, \mathrm{E}_{21}$.
$\mathrm{n}(\mathrm{S})={ }^{12} \mathrm{C}_{2}$
$n\left(E_{3}\right)=1, n\left(E_{6}\right)=2, n\left(E_{9}\right)=4, n\left(E_{12}\right)=5, n\left(E_{15}\right)=5, n\left(E_{18}\right)=3, n\left(E_{21}\right)=2$.
$\therefore \quad P(E)=P\left(E_{3}\right)+\ldots .+P\left(E_{21}\right)$
$=\frac{1+2+4+5+5+3+2}{{ }^{12} \mathrm{C}_{2}}=\frac{22 \times 2}{12 \times 11}=\frac{1}{3}$
Alter: The sum of the numbers for every selection is divisible by 3 or leaves the remainder 1 or leaves the remainder 2. These are equally probable. So, the required probability $=\frac{1}{3}$,because the sum of the three probabilities is 1 .

Hence (A) is the correct answer.
32.(B) Let x and y be the two quantities. When the sum of two non-negative quantities is fixed, the product will be maximum when they are equal.
So, the greatest product $=x y=10000$ where $x=y=100$.
Now, $x y \geq \frac{3}{4} \times 10000$
$\Rightarrow \quad x y \geq 7500 \Rightarrow x(200-x) \geq 7500$
$\Rightarrow \quad x^{2}-200 x+7500<0$
$\Rightarrow \quad(x-50)(x-150) \leq 0 \Rightarrow 50 \leq x \leq 150$
So, favourable number of ways $=101$
Total number of ways $=201$.
Hence, required probability $=\frac{101}{201}$.
Hence (B) is correct answer.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
33.(B)

$$
\begin{aligned}
& \log _{10} 301=\frac{(-3)(-4)(-6)}{(-4)(-5)(-7)}(2.4771)+\frac{(1)(-4)(-6)}{(4)(-1)(-3)}(2.4829) \\
&+\frac{(1)(-3)(-6)}{(5)(1)(-2)}(2.4843)+\frac{(1)(-3)(-4)}{(7)(3)(2)}(2.4871) \\
&=1.2739+4.9658-4.4717+0.7106=2.4786
\end{aligned}
$$

34.(C) $x=\frac{(-5)(-12)}{(-8)(-15)}(1)+\frac{(3)(-12)}{(8)(-7)}(3)+\frac{(3)(-5)}{(15)(7)}(4)$

$$
=\frac{1}{2}+\frac{27}{14}-\frac{4}{7}=1.86
$$

35.(A) Method of false position for Ist approximation

$$
x_{2}=x_{0}-\frac{\left(x_{1}-x_{0}\right) f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}
$$

Given $\quad x_{0}=-3, f\left(x_{0}\right)=f(-3)=-27+9+4=-14$

$$
\begin{aligned}
& x_{1}=-2, f\left(x_{1}\right)=f(-2)=-8+6+4=2 \\
\therefore \quad & x_{2}=-3-\frac{(-2+3)(-14)}{2-(-14)} \\
& x_{2}=-2.125 .
\end{aligned}
$$

Hence (A) is correct answer.
36.(D) By Newton Raphson method

$$
\begin{equation*}
=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \tag{1}
\end{equation*}
$$

Given that $\mathrm{a}, \mathrm{a}+\mathrm{h}$ are consecutive roots

$$
\therefore \quad \mathrm{x}_{0}=\mathrm{a}, \mathrm{x}_{1}=\mathrm{a}+\mathrm{h}
$$

From (1), $(a+h)=a-\frac{f(a)}{f^{\prime}(a)} \Rightarrow h=-\frac{f(a)}{f^{\prime}(a)}$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

Hence (D) is correct answer.
37.(A) Given curve $\mathrm{y}^{2}=\mathrm{px}+\mathrm{q}$

Differentiate with respect to $x, 2 y \cdot \frac{d y}{d x}=3 p x^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{3 p}{2}\left(\frac{x^{2}}{y}\right)$
$\therefore\left|\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{2.3}=\frac{3 \mathrm{p}}{2} \times \frac{4}{3}=2 \mathrm{p}$
For given line, slope of tangent $=4$
$\therefore 2 p=4 \Rightarrow p=2$
From equation (i), $9=2 \times 8+q \quad q=-7$.
38.(B) Since $\log |x|= \begin{cases}\log (x) ; & x>0 \\ \log (-x) ; & x<0\end{cases}$
$\therefore \frac{d}{d x} \log |x|=\left[\begin{array}{rr}\frac{1}{x} ; & x>0 \\ \frac{1}{(-x)}(-1)=\frac{1}{x} ; & x<0\end{array}\right.$
y has extreme values at $x=-1 / 2$,
So $\left(\frac{d y}{d x}\right)_{(-1)}=\left(\frac{d y}{d x}\right)_{(2)}=0$. Now $\frac{d y}{d x}=\frac{a}{x}+2 b x+1$

$$
-a-2 b+1=0
$$

39.(B) $\lim _{x \rightarrow 2} \frac{\int_{6}^{f(x)} 4 t^{3} d t}{x-2}(0 / 0$ form $)=\lim _{x \rightarrow 2} \frac{4\left(f(x)^{3} x f^{\prime}(x)\right)}{1}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
=4(f(2))^{3} \times f^{\prime}(2)=18
$$

40.(D) $\frac{d}{d x} F(x)=\frac{e^{\sin x}}{x} \Rightarrow \int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} d x=\int_{1}^{4} \frac{3 x^{2}}{x^{3}} e^{\sin x^{3} d x}$

Put $x^{3}=t \Rightarrow 3 x^{2} d x=d t$
$\mathrm{F}(\mathrm{t})=\int_{1}^{64} \frac{\mathrm{e}^{\text {sint }}}{\mathrm{t}} \mathrm{dt}=[\mathrm{F}(\mathrm{t})]_{1}^{64}=\mathrm{F}(64)-\mathrm{F}(1)$
On comparing, $\mathrm{k}=64$.
41.(A) Required area $\int_{1}^{e}\left[\log x-(\log x)^{2}\right] d x$

$$
A=\int_{1}^{e} \log x d x-\int_{1}^{e}(\log x)^{2} d x
$$

$$
\left.=[x \log x-x]_{1}^{+} \times(\log x)^{2}-2 x \log x+2 x\right]_{1}^{e}
$$

$$
4=[e-e-(-1)]-\left[e(1)^{2}-2 e+2 e-(2)\right]
$$

$$
=(1)-(e-2)=3-e .
$$

42.(B) Point of intersection of $y=\sin x$ and $y=\cos x$ are $\frac{\pi}{4}, \frac{5 \pi}{4}$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Since, $\sin x \geq \cos x$ on the interval $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$
\therefore Area of one such region $=\int_{\pi / 4}^{5 \pi / 4}(\sin x-\cos x) d x$

$$
=2 \sqrt{2} \text { sq.unit. }
$$

43.(D) The curve is $r=a(1+\cos \theta)$

Required volume

$$
\begin{aligned}
V & =\int_{0}^{\pi} \frac{2}{3} \pi r^{3} \sin \theta d \theta \\
& =\frac{2}{3} \int_{0}^{\pi} a^{3}(1+\cos \theta)^{3} \sin \theta d \theta
\end{aligned}
$$

Put $1+\cos \theta=t$
$-\sin \theta d \theta=d t$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
\therefore \quad V & =-\frac{2}{3} \pi \mathrm{a}^{3} \int \mathrm{t}^{3} \mathrm{dt} \\
& =-\frac{2}{3} \pi \mathrm{a}^{3} \frac{\mathrm{t}^{4}}{4} \\
& =-\frac{2}{3} \pi \mathrm{a}^{3}\left[\frac{(1+\cos \theta)^{4}}{4}\right]_{0}^{\pi} \\
& =\frac{8 \pi \mathrm{a}^{3}}{3}
\end{aligned}
$$

44.(D) The curve bounded by $x^{2}+y^{2}=a^{2}$ and chord $x=b$ revolved about x-axis, then

The required volumes is given by

$$
V=\int_{-a}^{b} \pi y^{2} d x
$$

Put $y^{2}=a^{2}-x^{2}$, from given curve

$$
=\int_{-a}^{b} \pi\left(a^{2}-x^{2}\right) d x=\pi\left[a^{2} x-\frac{1}{3}\right]_{-a}^{b}
$$

$$
=\pi\left[\left(a^{2} b-\frac{1}{3} b^{3}\right)-\left(-a^{3}+\frac{1}{3} a^{3}\right)\right]
$$

$$
\begin{aligned}
& =\pi\left[\frac{3 a^{2} b-b^{3}+2 a^{3}}{3}\right] \\
& =\frac{\pi(a+b)^{2}(2 a-b)}{3}
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

45.(D)Here, given curve is $r^{n} \sin n \theta=a^{n}$

$$
\text { or, } \quad r^{n}=a^{n} \operatorname{cosec} n \theta
$$

Now differentiating it w.r. to θ, we get

$$
n r^{n-1} \frac{d r}{d \theta}=-a^{n} \cdot n \operatorname{cosec} n \theta \cot n \theta
$$

or, $\quad r^{n-1} \frac{d r}{d \theta}=-r^{n} \cot n \theta$
or, $\quad \frac{d r}{d \theta}=-r \cot n \theta$
For orthogonal trajectory,

$$
\frac{d r}{d \theta}=-r^{2} \frac{d \theta}{d r}
$$

$\therefore \quad-r^{2} \frac{d \theta}{d r}=-r \cot n \theta$
or, $\quad \frac{d r}{r}=\tan n \theta$
Now, Integrating it, we get
or, $\quad n \log r+\log \cos n \theta=c$
or, $\quad r^{n} \cos n \theta=c$
46.(B) Here, the given equation is

$$
\begin{equation*}
\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0 \tag{1}
\end{equation*}
$$

Comparing with $\mathrm{Mdx}+\mathrm{Ndy}=0$, we get

$$
M=x^{2}+y^{2}+2 x \text { and } N=2 y
$$

It can be easily shown that the given equation is not exact.
Now consider $\frac{1}{N}\left[\frac{\partial M}{\partial y}-\frac{\partial M}{\partial x}\right]=1$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

$$
\text { I.F. }=e^{\int 14 x}=e^{x}
$$

Multiplying (1) be I.F., we get

$$
\begin{equation*}
e^{x}\left(x^{2}+y^{2}+2 x\right) d x+2 y e^{x} d y=0 \tag{2}
\end{equation*}
$$

Now

$$
M^{\prime}=e^{x}\left(x^{2}+y^{2}+2 x\right)
$$

and

$$
N^{\prime}=2 y e^{x}
$$

$\Rightarrow \quad \frac{\partial M^{\prime}}{\partial y}=2 y e^{x}=\frac{\partial N^{\prime}}{\partial x}$
\Rightarrow Equation (2) is exact and its solution as usual shall be

$$
\mathrm{e}^{\mathrm{x}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\mathrm{c} .
$$

47.(B) Here, given differential equation is

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=\frac{e^{2 x}}{x}
$$

$\therefore \mathrm{AE}$ will be
$D^{2}-4 D+4=0$
$\Rightarrow \quad(D-2)^{2}=0$
$\Rightarrow \quad D=2,2$
\therefore C.F. of $\mathrm{y}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right)$
Now $\mathrm{PI}=\frac{1}{\mathrm{D}^{2}-4 \mathrm{D}+4} \mathrm{e}^{2 \mathrm{x}} \mathrm{x}$

$$
\frac{1}{(D+2)^{2}-4(D+2)+4} \cdot \frac{1}{x}
$$

$$
\frac{1}{D^{2}} \cdot \frac{1}{x}
$$

$$
=e^{2 x}(x \log x-x)
$$

\therefore General solution will be

$$
y=\left(C_{1}+C_{2} x+x \log x-x\right) e^{2 x}
$$

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
48.(B) If $y_{1}(x)=\sin 3 x$, then

$$
\begin{array}{ll}
& y_{1}{ }^{\prime}(x)=3 \cos 3 x \text { and } y_{1}{ }^{\prime \prime}(x)=-9 \sin 3 x \\
\therefore \quad & y_{1}{ }^{\prime \prime}(x)+9 y_{1}(x)=-9 \sin 3 x+9(\sin 3 x)=0
\end{array}
$$

and so $y_{1}(x)$ is a solution of $y^{\prime \prime}+9 y=0$
Similarly $y_{2}(x)=\cos 3 x$ is a solution of $y^{\prime \prime}+9 y=0$
Now Wronskian of $y_{1}(x)$ and $y_{2}(x)$ is
$W(x)=\left|\begin{array}{ll}y_{1}(x) & y_{2}(x) \\ y_{1}^{\prime}(x) & y_{2}{ }^{\prime}(x)\end{array}\right|=\left|\begin{array}{cc}\sin 3 x & \cos 3 x \\ 3 \cos 3 x & -3 \sin 3 x\end{array}\right|$
$=-3\left(\sin ^{3} 3 x+\cos ^{2} 3 x\right)$, on expanding the determinant
$=-3 \neq 0$
Hence $y_{1}(x)$ and $y_{2}(x)$ are two linearly independent solutions of $\frac{d^{2} y}{d x^{2}}+9 y=0$.
49.(C) Since grad $f=i \frac{\partial f}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}$

$$
\begin{aligned}
& =\mathrm{iyz}^{2}+\mathrm{jxz} z^{2}+\mathrm{k} 2 x y z, \quad \because f=x y z^{2} \\
& =9 j \text { at }(1,0,3) .
\end{aligned}
$$

Now the unit vector t in the direction of the vector $\mathbf{i}-\mathbf{j}+\mathbf{k}$ is given by $t=(i-j+k)$ $/ \sqrt{3}$.
\therefore the required directional derivatives is

$$
\frac{\partial f}{\partial x}=\nabla f \cdot \mathbf{t}=9 \mathbf{j} \cdot \frac{1}{\sqrt{3}}(\mathbf{i}-\mathbf{j}+\mathbf{k})=-\frac{9}{\sqrt{3}}=-3 \sqrt{3}
$$

50.(C) Here $P=4 e^{2 x^{2}-y-z^{2}}$

$$
\begin{aligned}
\nabla P & =4\left(\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\hat{\mathbf{k}} \frac{\partial}{\partial z}\right) e^{2 x^{2}-y-z^{2}} \\
& =4[\mathbf{i} 2 x-\mathbf{j}-2 z \mathbf{k}] e^{2 x^{2}-y-z^{2}}
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\nabla \mathrm{P}$ at $(-1,1,-1)$
$\nabla \mathrm{P}=4[2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}]$
$(\nabla P) \cdot \hat{\mathbf{r}}=4[2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}] \frac{(-3 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})}{\sqrt{70}}$
$\frac{=4[-6-5+12]}{\sqrt{70}}$

$$
=\frac{4}{\sqrt{70}}
$$

51.(D)

$$
\begin{array}{r}
1101 \\
1110 \\
\hline 0000 \\
1101 \\
1101 \\
1101 \\
\hline 10110110
\end{array}
$$

52.(C)

$$
\begin{aligned}
& \Rightarrow \quad(100000000)-(00000101) \\
& \Rightarrow \quad(11111011)_{2}
\end{aligned}
$$

53.(C) Minus sign represented by bit-value "1" i.e. $-(64)_{10}$.
54.(C)

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
(69.5)_{10}=(105.4)_{8}
$$

55.(C) $\quad(111000111)_{2}=(707)_{8}$

$$
(707)_{8}+(273)_{8}=(1202)_{8}
$$

56.(B) calloc() is used to allocate the memory, which will be equal to the value, "num*size". Function returns a pointer to the first byte of the allocated space.If there is no space to allocate, a "NULL" pointer is returned.

Syntax:
void *calloc(size_t num, size_t);
57.(D) \Rightarrow getc () - Reads a character
\Rightarrow putc () - writes a character
\Rightarrow putw () - Writes an integer
58.(B) "FILE" is a type defined data type.The FILE data type gives access to files. Files can be opened in text or binary mode.
59.(C) \Rightarrow isalnum (), to ascii (), isdigit () functions of < ctype.h>
$\Rightarrow \exp ()$ function is in < math.h> header file.
60.(D) $\Rightarrow A B \oplus A C$
$\Rightarrow A B \cdot \overline{A C}+\overline{A B} \cdot A C$
$\Rightarrow A B(\bar{A}+\bar{C})+(\bar{A}+\bar{B}) A C$
$A B C+A B C$
$\Rightarrow A(B \bar{C}+\overline{B C})$
$\Rightarrow A(B \oplus C)$
61.(B) $\Rightarrow \overline{A \bar{B}+\bar{A} B}$
$\Rightarrow \overline{\mathrm{A} \oplus \mathrm{B}}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\Rightarrow \mathrm{AB}+\overline{\mathrm{A}} \overline{\mathrm{B}}$
$\Rightarrow A \odot B$
62.(C)

63.(A) $\Rightarrow x \cdot(y \cdot z+\bar{y} \cdot \bar{z})$
$\Rightarrow \overline{x \cdot(y \cdot z+\bar{y} \cdot \bar{z})}$
\therefore (Complementation)
$\Rightarrow \bar{x}+(\overline{y \cdot z+\bar{y} \cdot \bar{z}})$
\therefore (Demorgan's law)
$\Rightarrow \bar{x}+((1 \overline{y \cdot z}) \cdot(\overline{\bar{y} \cdot \bar{z}}))$
\therefore (Demorgan's law)
$\Rightarrow \bar{x}+((\bar{y}+\bar{z}) \cdot(\overline{\bar{y}}+\overline{\bar{z}}))$
(Demorgan's law)
$\Rightarrow \mathrm{x}+((\overline{\mathrm{y}}+\overline{\mathrm{z}}) \cdot(\mathrm{y}+\mathrm{z})) \quad \therefore$ (Demorgan's law)
64.(C) $\Rightarrow \bar{A} \cdot B+A \cdot \bar{B}$
$\Rightarrow \overline{\bar{A} \cdot B+\widehat{A} \cdot \bar{B}}$
$\Rightarrow(\overline{\bar{A} \cdot B}) \cdot(\bar{A} \cdot \overline{\bar{B}})$
\therefore (Demorgan's law)
$\Rightarrow(\overline{\bar{A}}+\bar{B})(\overline{\mathrm{A}}+\overline{\bar{B}})$
$\Rightarrow(A+\bar{B}) \cdot(\bar{A}+B)$
\therefore (Involution law)
$\Rightarrow(\overline{\mathrm{A}}+\mathrm{B}) \cdot(\mathrm{A}+\overline{\mathrm{B}}) \quad \therefore$ (Commutative law)

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
65.(C)

16	\| 3476	Remainders		
	217	4	=	4
	13	9	=	9
	0	13	$=$	
$(3476)_{10}=(\mathrm{D} 94)_{16}$				

66.(C)

1100	$=(-0.5)$
0100	$=(+0.5)$
0000	
0000	
$\frac{111100}{11110000}$	

67.(D) LIFO is an acronym that stands for lastin, first out. In computer science and queueing theory this refers to the way items stored in some types of data structures are processed. By definition, in a LIFO structured linear list, elements can be added or taken off from only one end, called the "top". A 'stack' data structure prefers to operate on LIFO approach.
68.(C) "math.h" header file in the standard library is basically used for general mathematical functions.
69.(C) The loop will be executed 255 times. The size of short int doesn't affect program execution.
70.(C)

$$
\begin{aligned}
& C_{4}{ }_{16}=11000100 \\
& 7 B_{16}=10000101 \\
& 1100 \quad 01000_{2} \\
& =\frac{1000 \quad 0101_{2}}{10100 \quad 1001}
\end{aligned}
$$

71.(C)

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com

> E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

There are three series.
72.(A) There are two series
(I) 11, 101, 1001, 10001

One zero is increased between two digits of $1-1$
(II) 10, 100, 1000, \qquad
One zero is increased in the end.
73.(A)

74.(C) The correct order is :

Child 1

Adolescent
4

Adult
3

Old
2
75.(A) Herd is a group of cattle. Similarly, flock is a collection of sheep. Hence, the answer is (A)
76.(B) Strong armymen will be represented by the region which is common to the square and the triangle but lies outside the circle i.e., 4.
77.(C) $\mathrm{c}=\mathrm{a}$ and $\mathrm{a}=\mathrm{b} \Rightarrow \mathrm{c} \neq \mathrm{a}$ and $\mathrm{a} \neq \mathrm{b}$
$\Rightarrow b \neq$ a i.e. $b=a$
78.(A) $\mathrm{a} \times \mathrm{b}$ and $\mathrm{b} \square_{\mathrm{c}}^{\mathrm{C}} \Rightarrow \mathrm{a}$ is a little less than b and $\mathrm{b}=\mathrm{c}$.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
$\Rightarrow \mathrm{a}$ is a little less than c.
$\Rightarrow \mathrm{c}$ is a little more than a i.e. $\mathrm{c}+\mathrm{a}$.
79.(A) $c \% b \Rightarrow c<b$
and $\mathrm{b} \times \mathrm{a} \Rightarrow \mathrm{b}$ is a little less than a .
$\Rightarrow c<a \Rightarrow a>c$ i.e. $a \Delta c$.
80.(D) $\mathrm{ac}+\mathrm{bc} \Rightarrow \mathrm{ac}>\mathrm{bc} \Rightarrow \mathrm{a}>\mathrm{b} \Rightarrow \mathrm{b}<$ a i.e.
b \% a.
81.(C) In the 1st and 2nd statements, the common code word is kew and the common word is she. So, kew means she. In the 1st and 3rd statements, the common code is deko and the common word is apples. So, deko means apples.
82.(C) In the first and second statements, the common code word is gnr and the common word is Olympic. So, gnr means Olympic. In the second and third statements, the common code is hyto and the common word is games. So, hyto means games. Thus, in the second statement, emf means summer.
83.(B) Mohd. Sheikh does not fulfil condifion (ii) nor does his alternative (b) fulfils the condition because his rating in quality of work is not ' D '. Therefore, he cannot be selected.
84.(A) Kiran Bala does not fulfil condition (i) nor is there any information about her rating in respect of dependability according to alternative (a). Therefore, the data are inadequate.
85.(B) Mandar Bhave does not fulfil condition (ii) According to alternative (b) his rating in respect of quality of work is not ' D '. Therefore he will not be selected.
86.(C) Fragile is the opposite of hardy. Amateur is the opposite of professional.
87.(D) Chapters make up a book. Rooms make up a house.
88.(D) To be a philanthropist, one must be generous. To be a pacifist one must be peaceloving.
89.(A) To bolster means to support. To goad means to urge.
90.(B) Pattern is the combination of three series.
$10,9,8,7 \ldots$, and $20,21,22,23, \ldots \ldots$.
\therefore Missing number $=7$
91.(A) While converting a sentence from direct speech to indirect speech, it undergoes some changes.

That Connective word

Future continuous : Future perfect continuous
Thus correct sentence is:-
Ronit said that he must have been guilty.
92.(C) While converting a sentence from direct speech to indirect speech, it undergoes some changes.
Present perfect :-
You

Past perfect
She

Thus correct sentence is :-
Aditi asked her how long she had lived there.
93.(A) He told me he had to get going. Otherwise, he was going to be late.
94.(C) Execrate means find repugnant which is antonym of adore which means Love intensely
95.(D) Sycophant means a person who tries to please someone in order to gain a personal advantage, which is antonym of supercilious that means Having or showing arrogant superiority to and disdain of those one views as unworthy.
96.(B) Tart means pleasantly sharp or acid to the taste.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc
97.(B) Corner means "A place off to the side of an area" and Nook means "A sheltered and secluded place". Thus Nook is the synonym of Corner.
98.(B) Correct spelling is "Dolorous" which means to show sorrow.
99.(A) The growth pattern is studied to estimate or outline the future prospects of the company. Thus (A) is the most logical fit. Hence, (A).
100.(B) Only ' Concupiscence' and ' motive ' make sense for the first half but only ' incitement' agrees in the second half with " stimulus". Hence (B).

[^0]: Toll Free: 1800-2000-092
 Mobile: 9001297111, 9829619614, 9001894073, 9829567114
 Website: www.vpmclasses.com
 FREE Online Student Portal: examprep.vpmclasses.com
 E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

[^1]: E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

[^2]: E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

[^3]: Toll Free: 1800-2000-092
 Mobile: 9001297111, 9829619614, 9001894073, 9829567114
 Website: www.vpmclasses.com
 FREE Online Student Portal: examprep.vpmclasses.com
 E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

