PART-A (1-20)

1. What are the order and degree respectively of the differential equation $\frac{d^{2}}{d x^{2}}\left\{\left(\frac{d^{2} y}{d x^{2}}\right)^{-3 / 2}\right\}=0 ?$
(A) 1,4
(B) 4,1
(C) 4,4
(D) 1,1
2. Determine the radius of convergence for the following power series.

$$
\sum_{n=1}^{\infty} \frac{n(-1)^{n}}{4^{n}}(x+3)^{n}
$$

(A) $\mathrm{R}=2$
(B) $\mathrm{R}=3$
(C) $R=4$
(D) $R=5$
3. Let $f(x)$ be a function such that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$, then find the values of a and b such that

$$
\lim _{x \rightarrow 0} \frac{x(1+a \cos x)-b \sin x}{(f(x))^{3}}=1
$$

(A) $\frac{5}{2}, \frac{3}{2}$
(B) $-\frac{5}{2}, \frac{3}{2}$
(C) $\frac{-5}{2}, \frac{-3}{2}$
(D) $\frac{5}{2}, \frac{3}{2}$
4. The series is: $\frac{2}{1^{2}}-\frac{3}{2^{2}}+\frac{4}{3^{2}}-\frac{5}{4^{2}}+\ldots$
(A) Conditional convergent
(B) absolutely convergent
(C) divergent
(D) none of the above
5. If p and q are positive real numbers, then the series $\frac{2^{p}}{1^{q}}+\frac{3^{p}}{2^{q}}+\frac{4^{p}}{3^{q}}+\ldots+\infty$ is convergent for,
(A) $p<q-1$
(B) $p<q+1$
(C) $p \geq q-1$
(D) $p \geq q+1$
6. Let $<Z,+, \ldots>$ be the ring of integers, define $a R b$ iff $a-b$ is even, then the relation R is ,
(A) reflexive only
(B) reflexive and symmetric only
(C) symmetric and transitive only
(D) an equivalence relation
7. Let $f:[-1,1] \rightarrow \square$ be continuous Assume that $\int_{-1}^{1} t(t) d t=2$ Then $\lim _{n \rightarrow \infty} \int_{-1}^{1} f(t) \sin ^{2}(n t) d t$ is equal to
(A) 0
(B)
(C) 2
(D) does not exist
8. Let A be the matrix $a=\left[\begin{array}{ll}a & c \\ 0 & a\end{array}\right]$ with $a, c \in R$ and $c \neq 0$ Then there is 2×2 matrix P such that PAP ${ }^{-1}$ is diagonal
(A) for all values of a
(B) for any value of a
(C) if and only if $\mathrm{a}=\mathrm{c}$
(D) if and only if $\mathrm{a}=0$
9. Let G be the group $G=Z_{2} \times \square_{3}$ Then-
(A) G is isomorphic to S_{3}
(B) G is isomorphic to a subgroup of S_{4}
(C) G is isomorphic to a proper subgroup of S_{5}
(D) G is not isomorphic to a subgroup of S_{n} for all $\mathrm{n}=3$
10. Determine the value of a for which the solution tend to zero as $t \rightarrow \infty$ for differential equation $y^{\prime \prime}-(2 \alpha-1) y^{\prime}+\alpha(\alpha-1) y=0$
(A) $\alpha>1$
(B) $\alpha<0$
(C) $\alpha>0$
(D) $\alpha<1$
11. Evaluate

(A) 1
(B) 2
(C)
$\frac{1}{2}$
(D)
12. For the system of linear equations $A X=b$, where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
-1 & -1 & -1
\end{array}\right], b=\left[\begin{array}{l}
3 \\
6 \\
3
\end{array}\right], X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4}
\end{array}\right]
$$

a true statements is-
(A) A^{-1} exists
(B) The system has unique solution
(C) The system is consistent
(D) None of (A), (B), (C) holds
13. The length of the arc of the curve $6 x y=x^{4}+3$ from $x=1$ to $x=2$ is
(A) $\frac{13}{12}$ unit
(B) $\frac{17}{12}$ unit
(C) $\frac{19}{12}$ unit
(D) none of these
14. Solve $x \frac{d^{2} y}{d x^{2}}+\left(4 x^{2}-1\right) \frac{d y}{d x}+4 x^{3} y=2 x^{3}$ and find it's general solution
(A) $\left(c_{1}+c_{2} x\right) e^{-x}+\frac{x}{2}$
(B) $\left(c_{1}+c_{2} x\right) e^{-x}-\frac{1}{2}$
(C) $\left(c_{1}+c_{2} x^{2}\right) e^{-x^{2}}-\frac{x}{2}$
(D)
15. Let V be the vector space of all 2×2 matrices over the field R of real numbers and $B=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. If $T: V \rightarrow V$ is a linear transformation defined by $T(A)=A B-B A$, then what is the dimension of the kernel of T?
(A) 1
(B) 2
(C) 3
(D) 4
16. If is an irrational vector for any value of n, then find the value of n for this vector to be solenoidal. (is position vector of a point)
(A) 2
(B) 3
(C) -2
(D) -3
17. The series

$$
\frac{x}{1+x^{2}}+\left(\frac{2^{2} x}{1+2^{3} x^{2}}-\frac{x}{1+x^{2}}\right)+\left(\frac{3^{2} x}{1+3^{3} x^{2}}-\frac{2^{2} x}{1+2^{3} x^{2}}\right)+\ldots
$$

(A) Converges uniformly
(B) Does not converges uniformly
(C) Diverges
(D) None of these
18. The value of $(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})+(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$
is equals to
(A) 0
(B) 1
(C) 2
(D) 1
19. If f is continuous on $[a, b]$ and $k \in[m, M]$ where $m=i n f, m=$ supf on $[a, b]$ then $\exists c \in[a, b]$ s.t. $f(c)$ is equals to
(A) $2 k$
(B) K
(C) 3 K
(D) 0
20. If $f(x, y)=2+2 x+2 y-x^{2}-y^{2}$ on the triangular region in the first quadrant bounded by the lines $x=0, y=0, y=9-x$ then the absolute maximum and minimum values respectively are
(A) 61,-4
(B) $-61,4$
(C) $4,-61$
(D) 0,4

PART-B (21-40)
21. The area of a loop of the curve $x y^{2}+(x+a)^{2}(x+2 a)=0$ is
(A) $2 \mathrm{a}^{2}\left(1-\frac{1}{4} \pi\right)$
(B) $2 \mathrm{a}^{2}\left(1+\frac{1}{4} \pi\right)$
(C) $2 a^{3}\left(1-\frac{1}{4} \pi^{2}\right)$
(D) None of these
22. The curve passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ which when rotated about the x axis gives a minimum surface area as
(A) Line
(B) Curved
(C) Catenary
(D) All the above
23. Evaluate $\iint_{D} e^{x / d A}$ where $D=\left\{(x, y) 1 \leq y \leq 2, y \leq x \leq y^{3}\right\}$
(A) $e^{4}-2 e$
(B) $\frac{e^{4}-4 e}{2}$
(C) $\frac{2 e^{4}-e}{2}$
(D) $\frac{e^{4}-2 e}{3}$
24. The radius of convergence of power series $\sum_{n=1}^{\infty} \frac{(x-6)^{n}}{n^{n}}$
(A) 1
(B) $1 / 2$
(C) $1 / 6$
(D) ∞
25. Evaluate $\underset{x \rightarrow 1}{\operatorname{Lim}}\left[\frac{\cos \frac{\pi}{2} x}{\log (1 / x)}\right]$
(A) 1
(B) 0
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{2}$
26. Determine directional derivative for
$f(x, y, z)=\sin (y z)+\ln \left(n^{2}\right) a t(1,1, \pi)$ in the direction $i+j-\hat{k}$ is
(A)
(B) $\frac{3-\pi}{\sqrt{3}}$
(C) $\frac{2+\pi}{\sqrt{3}}$
(D) $\frac{2-\pi}{\sqrt{3}}$
27. $\left(y^{2} z^{3} \cos x-4 x^{3} z\right) e x+2 z^{3} y \sin x d y+\left(3 y^{2} z^{2} \sin x-x^{4}\right) d z$ is an exact differential of a function ϕ then
(A) $\phi=x^{2} z^{3} \sin x-x^{4} z+c$
(B) $\phi=y^{2} z^{3} \sin x-x^{4} z+c$
(C) $\phi=x^{2} z^{2} \sin x-x^{3} z^{2}+c$
(D) $\phi=y^{2} z^{2} \sin x-x^{3} z^{2}+c$
28. The solution of the differential equation $x \sin y / x d y=(y \sin y(x-x) d x$ is
(A) $\log x=\cos y / x+c$
(B) $\log y=\cos x / y+c$
(C) $\log x=\cos x / y+c$
(D) None of these
29. Let $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$. then $f \frac{\left(x_{1}+x_{2}\right)}{2} \geq$
(A) $\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{2}$
(B) $\frac{f\left(x_{1}\right)+2 f\left(x_{2}\right)}{2}$
(C) $\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}$
(D) $\frac{2 f\left(x_{1}\right)+f\left(x_{2}\right)}{2}$
30. Solution of the initial-value problem
$\left(2 x \cos y+3 x^{2} y\right) d x+\left(x^{3}-x^{2} \sin y-y\right) d y=0$ is ,if

$$
y(0)=2 .
$$

(A) $x^{2} \cos y-x^{3} y+\frac{y^{2}}{2}=-2$
(B) $x^{2} \cos y+x^{3} y+\frac{y^{2}}{2}=-2$
(C) $x^{2} \cos y+x^{3} y-\frac{y^{2}}{2}=-2$
(D) None of these
31. Which of the following sequence of functions is not uniformly convergent on $(0,1)$?
(A) $\frac{(1)^{n-1}}{n} x^{n}$
(B) $\frac{n^{2} x}{1+n^{4} x^{2}}$
(C) $\frac{x}{1+n x^{2}}$
(D) $x^{n-1}(1-x)$
32. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$ satisfies the matrix equation $A^{2}-k A+2 l=0$, then what is the value of k ?
(A) 0
(B) 1
(C) 2
(D) 3
33. If $f(x)=\left\{\begin{array}{ll}e^{x}+a x, & x<0 \\ b(x-1)^{2}, & x \geq 0\end{array}\right.$ is differentiable at $x=0$, then (a, b) is
(A) $(-3,-1)$
(B) $(-3,1)$
(C) $(3,1)$
(D) $(3,-1)$
34. If $e^{a x} u(x)$ is a particular integral of $\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+a^{2} y=f(x)$ where a is a constant, then $\frac{d^{2} u}{d x^{2}}$ is equal to :
(A) $f(x)$
(B) $f(x) e^{a x}$
(C) $f(x) e^{-a x}$
(D) $f(x)\left(e^{a x}+e^{-a x}\right)$
35. The differential equation of a family of circles having the radius r and centre on the x-axis is :
(A) $y^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=r^{2}$
(B) $x^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=r^{2}$
(C) $\left(x^{2}+y^{2}\right)\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=r^{2}$
(D) $r^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=x^{2}$
36. It is given that $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at $x=5$. Then the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is
(A) ≤ 5
(B) ≥ 5
(C) <5
(D) >5
37. Eváluate the following integrals by first reversing, the order of integration
$\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} d y d x$ is
(A) $\frac{1}{12}\left(\mathrm{e}^{729}-1\right)$
(B) $\frac{1}{12}\left(\mathrm{e}^{-729}-1\right)$
(C) $\frac{1}{12}\left(1-\mathrm{e}^{729}\right)$
(D) $\frac{1}{12}\left(1-\mathrm{e}^{-729}\right)$
38. If $(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{\underline{2}} f^{\prime \prime}(\theta x)$ and $f(x)=(1-x)^{5 / 2}$, then the value of θ as x

1 is
(A) $\frac{3}{25}$
(B) $\frac{9}{25}$
(C) $\frac{4}{9}$
(D) $\frac{5}{9}$
39. If $\sum_{k=1}^{\infty} u_{k}$ be a series of real valued functions on a set E, and there exists positive numbers $M_{1}, M_{2} \ldots$ with $\sum_{k=1}^{\infty} M_{k}<\infty$ such that $\sum_{k=1}^{\infty} u_{k}(x) \leq \sum_{k=1}^{\infty} M_{k} \quad(x \in E)$, then
(A) $\sum_{k=1}^{\infty} u_{k}$ Converges uniformly on E.
(B) $\sum_{k=1}^{\infty} M_{k}$ is not a convergent sequence.
(C) $\sum_{k=1}^{\infty} u_{k}$ is not converges uniformly on E.
(D) $\sum_{k=1} M_{k}$ is not a Cauchy sequence.
40. By divergence theorem, value of $\int\left(1 x^{2}+m y^{2}+n z^{2}\right) d s$ taken over the sphere
$(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=p^{2}$, where
$\mathrm{I}, \mathrm{m}, \mathrm{n}$, being the direction cosines of the normal to the sphere, is
(A) $\frac{4 \pi}{3}(a+b+c) p^{3}$
(B) $\frac{3 \pi}{4}(a+b+c) p^{3}$
(C) $\frac{8 \pi}{3}(a+b+c) p^{3}$
(D) $\frac{3 \pi}{8}(a+b+c) p^{3}$

PART-C (41-50)

41. Solve $x y_{2}-y_{1}-4 x^{3} y=-4 x^{5}$, given that $y=e^{x^{2}}$ is a solution of the left hand side equated to zero.
42. (a) Discuss the continuity and discontinuity of the following functions
(i) $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{array} \quad\right.$ (Dirichlet's function)
(ii) $f(x)=\left\{\begin{array}{cc}x & \text { if } x \text { is rational } \\ 1-x & \text { if } x \text { is irrational }\end{array}\right.$
(b) Given that the a, b, c are in $A . P$, then find the value of determinant $\left|\begin{array}{lll}x+2 & x+3 & x+a \\ x+4 & x+5 & x+b \\ x+6 & x+7 & x+c\end{array}\right|$
43. For what values of μ the equations

$$
\begin{aligned}
& x+y+z=1 \\
& x+2 y+4 z=\mu
\end{aligned}
$$

have a solution and solve them completely in each case.
44. (a) Evaluate $\iint_{S}\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)^{-\frac{1}{2}}$ dS over the surface of the ellipsoid $a x^{2}+b y^{2}+c z^{2}=1$.
(b) Verify Stoke's theorem for $\mathbf{f}=(2 y+z, x-z, y-x)$ taken over the triangle ABC cut from the plane $x+y+z=1$ by the co-ordinate planes.
45. (a) If $a_{n}+1=\sqrt{ }\left(k+a_{n}\right)$, where a_{1} and k are positive, show that the sequence $\left\{a_{n}\right\}$ is increasing or decreasing according as a_{1} is less or greater than the positive root of the equation $x^{2}=x+k$, and has in either case this root as its limit.
i.e. prove that if $u_{n}=\sqrt{k+u_{n-1}}$ and $u_{1}>0$ then $u_{n} \rightarrow \alpha$
(b) Let $f(0)=0$ and $f^{\prime}(0)=1$, then for a positive integer k, show that

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{1}{x}\left\{f(x)+f\left(\frac{x}{2}\right)+f\left(\frac{x}{3}\right)+\ldots .+f\left(\frac{x}{k}\right)\right\} \\
=1+\frac{1}{2}+\frac{1}{3}+\ldots .+\frac{1}{k}
\end{gathered}
$$

46. Let T be the linear operator on R^{3} defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2}+4 x_{3}\right)
$$

What is the matrix of T in the ordered basis $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ where $\alpha_{1}=(1,0,1), \alpha_{2}=(-1,2,1)$ and $\alpha_{3}=(2,1,1)$?
47. Prove that if P be a sylow p-subgroups of G. let $x \in N(P)$ s.t. $o(n)=P^{i}$ then $x \in P$
48. (a) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2 real matrix with $\operatorname{det}(A)=1$, If A has no real eigenvalues then show that $(a+d)^{2}$ 4.
(b) Find the directional derivative of the function $f=x^{2}-y^{2}+3 z^{2}$ at the point $M(-1,2,+1)$ in the direction of the line $M N$, where N is the point $(3,0,5)$.
49. If c is an interior point of the domain $[a, b]$ of a function f and is such that
(i) f^{\prime}
$(C)=f^{\prime \prime}$
$(C)=f^{\prime \prime \prime}$
$(C)=\ldots=f^{n-1}$
(C) $=0$, and
(ii) $\mathrm{f}^{\mathrm{n}}(\mathrm{C})$ exists and is not zero.

While for n odd, $f(C)$ is not an extreme value, then show for n even, $f(C)$ is a maximum or minimum value according as $\mathrm{f}^{\mathrm{n}}(\mathrm{C})$ is negative or positive.
50. (a) Let $\theta: G \rightarrow G^{\prime}$ be a homomorphism of G in G^{\prime} with G^{\prime} abelian. Let H be a subgroup of G containing $\operatorname{Ker} \theta$. Show that H is normal in G.
(b) If \mathbf{v} be the vector space of all square $\mathrm{n} \times \mathrm{n}$ matrices over a field \mathbf{F} and $\mathbf{W}=(\mathbf{A} \in \mathbf{V}: \mathbf{A M}$ $=\mathbf{M A})$, for a given matrix \mathbf{M}, then show \mathbf{W} is a subspace of $\mathbf{v}(F)$.

ANSWER KEY

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	B	C	C	A	A	D	A	B	A	B	C	D	B	D	B
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	D	B	A	B	C	A	C	B	0	D	B	B	A	C	C
Ques.	31	32	33	34	35	36	37	38	39	40					
Ans.	B	B	B	C	A	D	A	B	A	C					

HINTS AND SOLUTIONS

1.(B) Here given differential equation is

$$
\begin{aligned}
& \Rightarrow \quad \frac{d^{2}}{d x^{2}}\left\{\left(\frac{d^{2} y}{d x^{2}}\right)^{-3 / 2}\right\} \\
& =-\frac{3}{2}\left\{\left(-\frac{5}{2}\right)\left(\frac{d^{2} y}{d x^{2}}\right)^{-7 / 2}\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\left(\frac{d^{2} y}{d x^{2}}\right)^{-5 / 2} \frac{d^{4} y}{d x^{4}}\right\} \\
& \text { If } \quad \frac{d^{2}}{d x^{2}}\left\{\left(\frac{d^{2} y}{d x^{2}}\right)^{-3 / 2}\right\}=0 \\
& \Rightarrow \quad \frac{5}{2}\left(\frac{d^{3} y}{d x^{3}}\right)^{2}=\left(\frac{d^{2} y}{d x^{2}}\right) \frac{d^{4} y}{d x^{4}} \\
& \therefore \quad \text { order }=4 \text { and degree }=1
\end{aligned}
$$

2.(C) We know that this power series will converge for $x=-3$. To determine the remainder of the x's for which we'll get convergence we can use any of the tests. After application of the test that we choose to work with we will arrive at condition(s) on x that we can use to determine which values of x for which the power series will converge and for which values for x the power series will diverges. From this, we can get the radius of convergence and most of the interval of convergence (with the possible exception of the endpoints.

With all that said, the best tests to use here are almost always the ratio or root test. Most of the power series that we'll be looking at are set up for one or the other. In this case we'll use the ratio test.

$$
\begin{aligned}
L & \left.=\lim _{n \rightarrow} \frac{(-1)^{n+1}(n+1)(x+3)^{n+1}}{4^{n+1}} \frac{4^{n}}{(-1)^{n}(n)(x+3)^{n}} \right\rvert\, \\
& =\lim _{n \infty}\left|\frac{-(n+1)(x+3)}{4 n}\right|
\end{aligned}
$$

Before going any farther with the limit let's notice that since x is not dependent on the limit and so it can be factored out of the limit. We will need to keep the absolute value bars on it since we need to make sure everything stays positive and x could be a value that will make things negative.

The limit is then,

$$
\begin{aligned}
& L=|x+3| \lim _{n \rightarrow \infty} \frac{n+1}{4 n} \\
& =\frac{1}{4}|x+3|
\end{aligned}
$$

So, the ratio test tells us that if $L<1$ the series will converge, if $L>1$ the series will diverge. So, we have,

$$
\begin{aligned}
& =\frac{1}{4}|x+3|<1 \Rightarrow|x+3|<4 \\
& =\frac{1}{4}|x+3|>1 \Rightarrow|x+3|>4
\end{aligned}
$$

series converges
series diverges
We'll deal with the $L=1$ case in a bit. Notice that we now have the radius of convergence for this power series. These are exactly the conditions required for the radius of convergence. The radius of convergence for this power series is $R=4$.
3.(C) Since, $\lim _{x \rightarrow 0} \frac{x(1+a+\cos x)-b \sin x}{\{f(x)\}^{3}}=1$

$$
\operatorname{mox}_{\rightarrow 0} \frac{(1+a-b)}{x^{2}}+\left(-\frac{a}{2!}+\frac{b}{3!}\right)+x^{2}\left(\frac{a}{4!}-\frac{b}{5!}\right)+\ldots \cdot{ }_{\left\{\frac{f(x)}{x}\right\}^{3}}=1
$$

$\therefore \quad$ R.H.S is finite then L.H.S is also finite, then

$$
\begin{aligned}
& \quad 1+a-b=0 \text { and }-\frac{a}{2!}+\frac{b}{3!}=1 \\
& \Rightarrow \quad-3 a+b=6
\end{aligned}
$$

then we get, $\quad a=-5 / 2$ and $b=-3 / 2$.
4.(A) Let the given series is denoted by ΣU_{n}
then $\quad \Sigma\left|U_{n}\right|=\frac{2}{1^{2}}+\frac{3}{2^{2}}+\frac{4}{3^{2}}+\frac{5}{4^{2}}+\ldots \ldots . \Sigma \frac{\mathrm{n}+1}{\mathrm{n}^{2}}$

$$
\begin{equation*}
=\Sigma v_{n} \tag{say}
\end{equation*}
$$

Compare this series $\Sigma \mathrm{v}_{\mathrm{n}}$ with the auxiliary series

$$
\Sigma \mathrm{w}_{\mathrm{n}}=\Sigma 1 / \mathrm{n}
$$

Then $\lim _{n \rightarrow \infty} \frac{v_{n}}{w_{n}}=\lim _{n \rightarrow \infty}\left[\frac{n+1}{n^{2}} \times \frac{n}{1}\right]$

$$
=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)
$$

$$
=1
$$

which is a finite quantity.
Hence Σu_{n} and Σw_{n} are either both convergent or both divergent. But $\Sigma w_{n}=\Sigma(1 / n)$ is divergent as the series $\Sigma \frac{1}{n^{p}}$ is divergent if $P=1$.

Hence the series Σv_{n} is divergent.
Also in the series Σu_{n} we find that its terms are alternately positive and negative, its terms are continually decreasing and $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n^{2}}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{1}{n^{2}}\right)=0$

Thus all conditions of Leibnitz's test are satisfied and as such Σu_{n} is convergent.
Hence the given series is conditionally convergent.
5.(A) Here, given series Σu_{n} is

$$
\frac{2^{p}}{1^{q}}+\frac{3^{p}}{2^{q}}+\frac{4^{p}}{3^{q}}+\ldots
$$

Let

$$
\begin{aligned}
U_{n} & =\frac{(n+1)^{p}}{n^{q}}=\left(\frac{n+1}{n}\right)^{p} \cdot \frac{1}{n^{q-p}} \\
& =n^{p-q}\left(1+\frac{1}{n}\right)^{p}
\end{aligned}
$$

Take
$V_{n}=n^{p-q}+\frac{1}{n^{q-p}}$
$\therefore \quad \lim _{n \rightarrow \infty} \frac{U_{n}}{V_{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{p}$
$=1$, finite and non-zero.
\therefore By P series test
$\sum V_{n}=\frac{1}{n^{q-p}}$ is convergent of $q-p>1$
or

$$
p<q-1
$$

when ΣU_{n} is convergent when $p<q-1$, then ΣU_{n} is also convergent when $p<q-1$.
6.(D) Here, it is given that $<\mathrm{Z},+\gg$ be the ring of integers defined
by $a R b$ if $a-b$ is even.
Let $\quad a, b, c \in Z$,
then, $\quad a R a \Rightarrow a-a$ is even $\forall a \in Z$
\therefore R is reflexive.
$a-b$ is even then $b-a$ is also even.
Then $\quad a R b=b R a \quad \forall a, b \in Z$
R is symmetric.
and if $(a-b)$ and $(b-c)$ both are even, then

$$
(a-b)+(b-c) \text { are even. }
$$

$\Rightarrow(\mathrm{a}-\mathrm{c})$ is also even.

Then aRb and $\mathrm{aRc} \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}$
$\therefore \mathrm{R}$ is transitive.
Thus R is an equivalence relation.
7. (A) Since firstly let $I=\int_{-1}^{1} f(t) \sin ^{2}(n t) d t$

$$
\text { now } \begin{aligned}
I & =\sin ^{2} n t \int_{-1}^{1} \int_{-1}^{1} f(t) d t-\int_{-1}^{1} 2 \operatorname{sinnt} \cos n t \cdot n \int_{-1}^{1} f(t) d t d t \\
& =\sin ^{2} n t[2]_{-1}^{1}-\int_{-1}^{1} \sin 2 n t \cdot 2 x d t \\
& =\left.2 \sin ^{2} n t\right|_{-1} ^{1}+2 n\left[\frac{\cos 2 n t}{2 n}\right]_{-1}^{1} \\
& =0
\end{aligned}
$$

$\operatorname{Lim} \int_{-1}^{1} f(t) \sin ^{2}(n t) d t=0$
8. (B) Since $A=\left[\begin{array}{ll}a & c \\ 0 & a\end{array}\right]$
for eigenvalues of A
the characteristic equation is given by

$$
\begin{aligned}
& \quad|A-\lambda I|=0 \\
& \left|\begin{array}{cc}
a-\lambda & c \\
0 & a-\lambda
\end{array}\right|=0 \\
& \Rightarrow \quad(a-\lambda)^{2}=0
\end{aligned}
$$

the eigenvalues are $\lambda=a, a$
now let $\left[\begin{array}{ll}x_{1} & x_{t}\end{array}\right]^{\top}$ be the eigenvector correspond to eigenvalue

$$
\left[\begin{array}{ll}
0 & c \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
x_{2}=0
$$

but X_{1} arbitrary

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
$\Rightarrow \quad$ the eigen vector corresponding to both eigenvalues is linearly independent thus we could not find any matrix P such that $P A P^{-1}$ is diagonal for any value of a.
9.(A) \quad Since $G=\square_{2} \times \square_{3}$

Hence G is cyclic group of order 6 and $O\left(S_{3}\right)=6$
and we know that permutation groups are cyclic for $\quad(\mathrm{n} \leq 3)$
$\Rightarrow G$ and S_{3} are both cyclic group of order 6
\Rightarrow They are isomorphic to each other
10.(B) Given differential equation

$$
y^{\prime \prime}-(2 \alpha-1) y^{\prime}+\alpha(\alpha-1) y=0
$$

its auxiliary equation is

$$
r^{2}-(2 \alpha-1) \alpha+(\alpha-1)=(r-\alpha)(r+1-\alpha)=0
$$

and its roots are $r_{1}=\alpha \quad r_{2}=\alpha-1$
Hence the general solution is

$$
y(t)=c_{1} e^{\alpha t}+c_{2} e^{(\alpha-1) t}
$$

as $t \rightarrow \infty$ it is possible that $y \rightarrow 0$
only for $\alpha<0$
11.(C) Let $\mathrm{L}=$

Along the path $y=x$ we have

$$
\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}=\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x^{3} x}{x^{6}+x^{2}}
$$

$$
=\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x^{4}}{x^{6}+x^{2}} .
$$

$$
=\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{4}+1}=0
$$

Along path $\mathrm{y}=\mathrm{x}^{3}$

$$
\begin{aligned}
\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{6}+y^{2}} & =\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x^{3}, x^{3}}{x^{6}+\left(x^{3}\right)^{2}}=\underset{(x, y)+(0,0)}{\operatorname{Lim}_{2}}=\frac{x^{6}}{2 x^{6}} \\
& =\frac{1}{2}
\end{aligned}
$$

12.(D) Let

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
-1 & -1 & -1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { by } \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}
\end{array}
\end{aligned}
$$

$$
\Rightarrow \rho(A)=1
$$

$$
[A: b]=\left[\begin{array}{ccccc}
1 & 1 & 1 & : & 3 \\
2 & 2 & 2 & : & 6 \\
-1 & -1 & -1 & : & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{lllll}
1 & 1 & 1 & : & 3 \\
0 & 0 & 0 & : & 0 \\
0 & 0 & 0 & : & 6
\end{array}\right]
$$

$\therefore \rho([\mathrm{A}: \mathrm{b}])=2$

$$
\rho(A)=1 \Rightarrow A \text { is a singular matrix }
$$

$\Rightarrow A^{-1}$ is does not exist
$\rho(A) \neq \rho([A ; b])$
\Rightarrow The system is not consistent.
13.(B) Here it is given that curve $6 x y=x^{4}+3$ from $x=1$ to $x=2$

From curve $6 x y=x^{4}+3$

$$
\begin{aligned}
& y=\frac{x^{4}}{6 x}+\frac{3}{6 x} \\
& y=\frac{x^{3}}{6}+\frac{1}{2 x}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{d y}{d x}=\frac{3 x^{2}}{6}-\frac{1}{2 x^{2}} \\
& \frac{d y}{d x}=\frac{x^{2}}{2}-\frac{1}{2 x^{2}}
\end{aligned}
$$

\therefore Required length of arc $S=\int_{1}^{2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$

$$
=\int_{1}^{2} \sqrt{1+\frac{1}{4}\left(x^{2}-\frac{1}{x^{2}}\right)^{2}} d x
$$

$$
=\int_{1}^{2} \sqrt{\frac{4+\left(x^{2}-\frac{1}{x^{2}}\right)^{2}}{4}} d x
$$

$$
=\int_{1}^{2} \frac{1}{2} \sqrt{\left(4+x^{4}+\frac{1}{x^{4}}-2\right)} d x
$$

$$
=\frac{1}{2} \int_{1}^{2} \sqrt{\left(x^{4}+\frac{1}{x^{4}}+2\right)} d x
$$

$$
=\frac{1}{2} \int_{1}^{2} \sqrt{\left(x^{2}+\frac{1}{x^{2}}\right)^{2}} d x
$$

$$
=\frac{1}{2} \int_{1}^{2}\left(x^{2}+\frac{1}{x^{2}}\right) d x
$$

$$
2-\frac{1}{2}\left[\frac{x^{3}}{3}-\frac{1}{x}\right]_{1}^{2}
$$

$$
=\frac{1}{2}\left[\left(\frac{8}{3}-\frac{1}{2}\right)-\left(\frac{1}{3}-1\right)\right]
$$

$$
=\frac{1}{2}\left[\left(\frac{16-3}{6}\right)-\left(\frac{1-3}{3}\right)\right]
$$

$$
=\frac{1}{2}\left[\frac{13}{6}+\frac{2}{3}\right]=\frac{1}{2} \times\left(\frac{13+4}{6}\right)
$$

$$
=\frac{17}{12} \text { unit }
$$

14.(D) $\mathrm{P}=\frac{4 \mathrm{x}^{2}-1}{\mathrm{x}}, \mathrm{Q}=4 \mathrm{x}^{2}, \mathrm{X}=2 \mathrm{x}^{2}$.

In the transformed differential, choose z in such a way that

$$
\begin{aligned}
& Q_{1}=\frac{Q}{(d z / d x)^{2}}=1 \text { or } \quad \frac{4 x^{2}}{(d z / d x)^{2}}=1 \\
& \Rightarrow d z / d x=2 x \Rightarrow z=x^{2} \text { and } d^{2} z / d x^{2}=2
\end{aligned}
$$

The reduced differential is $\frac{d^{2} y}{d z^{2}}+\frac{2+\left(\frac{4 x^{2}-1}{x}\right) \cdot 2 x}{4 x^{2}} \cdot \frac{d y}{d z}+y=\frac{2 x^{2}}{(2 x)^{2}}$
or $\quad \frac{d^{2} y}{d z^{2}}+2 \frac{d y}{d z}+y=\frac{1}{2}$
or

$$
\left(D^{2}+2 D+1\right) y=\frac{1}{6} \text { where } D=d / d z .
$$

A.E. is $(m+1)^{2}=0$, giving $m=-1$ two times.
$\Rightarrow C . F=\left(C_{1}+C_{2} z\right) e^{-z}$. Also P.I. $=\frac{1}{(1+D)^{2}}\left(\frac{1}{2}\right)=\frac{1}{2}$.
Hence the General solution is given by

$$
y=C . F \cdot+P \cdot I \cdot=\left(C_{1}+C_{2} z\right) e^{-z}+\frac{1}{2}=\left(C_{1}+C_{2} x^{2}\right) e^{-x^{2}}+\frac{1}{2}
$$

15.(B) Null space or kernel of linear transformation T

Let $U(F)$ and $V(F)$ be two vector spaces and let T be a linear transformation from U to V, then the null space of T written as $N(T)$ is the set of all vectors α in U such that $T(\alpha)=$ 0 (zero vector of V)

Thus $N(T)=\{\alpha \in U: T(\alpha)=0 \in V\}$
The null space of T is also called the kernel of T .

Now the standard basis for a vector space of all 2×2 matrices over field R of real number is $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$
where $\quad e_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), e_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$

$$
e_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), e_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

we have, $T(A)=A B-B A$, where $B=\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)$
so, $T\left(e_{1}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)-\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

$$
=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

$$
=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)
$$

Thus, $T\left(e_{1}\right), T\left(e_{2}\right), T\left(e_{3}\right)$ and $T\left(e_{4}\right)$ span the range of T
Null space

$$
\begin{aligned}
& \text { let }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \text { null space of } T \\
& \Rightarrow \quad \\
& \Rightarrow\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \Rightarrow \\
& \Rightarrow \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 2 a+3 b \\
c & 2 c+3 d
\end{array}\right)-\left(\begin{array}{cc}
1 & 2 \\
0 & 3
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
& \Rightarrow \quad\left(\begin{array}{cc}
-2 c & 2 a+2 b-2 d \\
-2 c & 2 c
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
& \Rightarrow \quad 2 c=0 ; 2 a+2 b-2 d=0
\end{aligned}
$$

This system of equations have two independent variables hence, it have two independent solutions.
\Rightarrow The dimension of null space is 2 .
16.(D) div

$$
r^{n} \mathbf{r}=\nabla\left(r^{n} \mathbf{r}\right)
$$

$$
\begin{aligned}
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left\{r^{n}(\hat{i} x+\hat{j} y+k z)\right\} \\
& =\frac{\partial}{\partial x}\left(r^{n} x\right)+\frac{\partial}{\partial y}\left(r^{n} y\right)+\frac{\partial}{\partial z}\left(r^{n} z\right) \\
& =r^{n}+x n r^{n-1} \frac{\partial r}{\partial x}+r^{n}+y n r^{n-1} \frac{\partial r}{\partial y}+r^{n}+z n r^{n-1} \frac{\partial r}{\partial z} \\
& =3 r^{n}+n r^{n-1}\left\{x \frac{\partial r}{\partial x}+y \frac{\partial r}{\partial y}+z \frac{\partial r}{\partial z}\right\}
\end{aligned}
$$

$$
=3 r^{n}+x r^{n-1}\left\{x \cdot \frac{x}{r}+y \cdot \frac{y}{r}+z \cdot \frac{z}{r}\right\}
$$

$$
=3 r^{n}+n r^{n-1}\left(\frac{x^{2}+y^{2}+z^{2}}{r}\right)
$$

$$
=3 r^{n}+n r^{n-1} \cdot r
$$

$$
=3 r^{n}+n r^{n}=(3+n)
$$

i.e., div $r^{n} \mathbf{r}=(n+3){ }^{n}$ which is zero if $n=-3$.

Thus diver $r=0$ only if $n=-3$
This shows that r^{n} tis solenoidal vector only if $n=-3$.
17.(B) Here

$$
\begin{aligned}
& u_{1}(x)=\frac{x}{1+x^{2}} \\
& u_{2}(x)=\frac{2^{2} x}{1+2^{3} x^{2}}-\frac{x}{1+x^{2}} \\
& u_{3}(x)=\frac{3^{2} x}{1+3^{2} x^{2}}-\frac{2^{2} x}{1+2^{3} x^{2}}
\end{aligned}
$$

$$
u_{n}(x)=\frac{n^{2} x}{1+n^{3} x^{2}}-\frac{(n-1)^{2} x}{1+(n-1)^{3} x^{2}}
$$

Adding $f_{n}(x)=\frac{n^{2} x}{1+n^{3} x^{2}}$
Hence $f(x)=\lim _{n \rightarrow \infty} f n(x)=0, \forall x \in[0,1]$
Now, $M_{n}=\operatorname{sub}\left\{\left|f_{n}(x)-f(x)\right| ; x \in[0,1]\right\}$

$$
\begin{aligned}
& =\operatorname{sub}\left\{\frac{n^{2} x}{1+n^{3} x^{2}} ; x \in[0,1]\right\} \\
& \geq \frac{n^{2} \cdot \frac{1}{n^{3 / 2}}}{1+n^{3} \cdot \frac{1}{n^{3}}}=\frac{\sqrt{n}}{2} \quad\left[\text { taking } x=\frac{1}{n^{3 / 2}}\right]
\end{aligned}
$$

$\rightarrow \infty$ as $n \rightarrow \infty$
Since M_{n} does not tend to zero as $n \rightarrow \infty$, thus, the series is not uniformly convergent on $[0,1]$ by M_{n}-test.
Here 0 is a point of non-uniform convergence.
18.(A) we have

$$
\begin{align*}
& (\vec{b} \times \vec{c})(\vec{a} \times \vec{d})=\frac{b \cdot \vec{a} \cdot \vec{b} \cdot \vec{d}}{} \begin{array}{l}
\vec{a} \cdot \vec{a} \cdot \vec{d} \\
=(\vec{b} \cdot \vec{a})(c \vec{d})-(\vec{c} \cdot \vec{a})(\vec{b} \cdot \vec{d})
\end{array}
\end{align*}
$$

similarly

$$
\begin{align*}
& (\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}) \cdot(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{d}})=\left|\begin{array}{ll}
\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~d}} \\
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~d}}
\end{array}\right| \\
& =(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~b}})(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~d}})-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}})(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~d}}) \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& (\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{d}})=\left|\begin{array}{ll}
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~d}} \\
\overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{~d}}
\end{array}\right| \\
& =(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}})(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{~d}})-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~d}})(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \tag{3}
\end{align*}
$$

Adding (1), (2) and (3) we get

$$
(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})+(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=0
$$

19.(B) If f is continuous on $[a, b]$ it is bounded and attains its boundary on $[a, b]$. Let $m=f\left(x_{1}\right), m=$ $f\left(x_{2}\right)$ where $x_{1}, x_{2} \in[a, b]$ if $x_{1}=x_{2}$ then f is constant on $[a, b]$ then the result is evident let $x_{1}<x_{2}$. since $\left[x_{1}, x_{2}\right]<[a, b] f$ is continuous on $\left[x_{1}, x_{2}\right]$ and so $c<\left[x_{1}, x_{2}\right]<[a, b]$ s.t., f (c) $=k$. the result similarly follows if $x_{1}>x_{2}$.
Since every number lying between m and M is member of the range set of f on $[a, b]$, then we have $f(c)=k$.
20.(C) Since f is differentiable, the only places where f can assume these values which are points inside the triangle (Figure), where $f_{x}=f_{y}=0$ and points on the boundary are:

(a) Interior points. For these we have

$$
f_{x}=2-2 x=0, f_{y}=2-2 y=0
$$

yielding the single point $(x, y)=(1,1)$. The value is

$$
f(1,1)=4 .
$$

(b) Boundary points. We take the triangle one side at a time:
(i) On the segment $\mathrm{OA}, \mathrm{y}=0$. The function

$$
f(x, y)=f(x, 0)=2+2 x-x^{2}
$$

may now be regarded as a function of x defined on the closed interval $0 \leq x \leq 9$. Its extreme values may occur at the endpoints

$$
\begin{array}{lll}
x=0 & \text { where } & f(0,0)=2 \\
x=9 & \text { where } & f(9,0)=2+18-81=-6
\end{array}
$$

and at the interior points where $f^{\prime}(x, 0)=2-2 x=0$. The only interior point where $f^{\prime}(x, 0)=0$ is $x=1$. where

$$
f(x, 0)=f(1,0)=3
$$

(ii) On the segment $\mathrm{OB}, \mathrm{x}=0$ and

$$
f(x, y)=f(0, y)=2+2 y-y^{2}
$$

We know from the symmetry of f in x and y and from the analysis we just carried out that the candidates on this segment are

$$
f(0,0)=2, \quad f(0,9)=-61, \quad f(0,1)=3 .
$$

(iii) We have already accounted for the values of f at the endpoints of $A B$, so we need only look at the interior points of $A B$. With $y=9-x$, we have

$$
f(x, y)=2+2 x+2(9-x)-x^{2}-(9-x)^{2}=-61+18 x-2 x^{2}
$$

Setting $f^{\prime}(x, 9-x)=18-4 x=0$ gives

$$
x=\frac{18}{4}=\frac{9}{2} .
$$

At this value of x,

$$
y=9-\frac{9}{2}=\frac{9}{2} \quad \text { and } \quad f(x, y)=f\left(\frac{9}{2}, \frac{9}{2}\right)=\frac{41}{2} .
$$

We list all the candidates : 4, 2, $-61,3,-(41 / 2)$. The maximum is 4 , which f assumes at $(1,1)$. The minimum is -61 , which f assumes at $(0,9)$ and $(9,0)$.
21.(A) The curve is symmetrical about x - axis. putting $y=0$ we get $x=-a$, and $x=-z a$

The loop is formed between
$x=-a$ and $x=-29$

To find the area of the loop, we first shift the origin to the point $(-a, 0)$, the equation of the curve then becomes
$(x-a) y^{2}+\{(x-a)+a\}^{2}+(x-a+2 a\}=0$
$\Rightarrow y^{2}(x-a)+x^{2}(x+a)=0$
$\Rightarrow y^{2}=\frac{x^{2}(a+x)}{a-x}$
Now the origin being at the point A, the new limits for the loop are $x=-$ a to $x=0$
4. required area of the loop $=2 \times$ area CPA
$=2 \int_{0}^{0} y d x$
$=2 \int_{-a}^{0}\left[-x \sqrt{\frac{a+x}{a-x}}\right] d x$

$$
=2 \int_{-a}^{0} \frac{-x(a+x)}{\sqrt{a^{2}-x^{2}}} d x
$$

put $x=-a \sin \theta$

$$
d x=-a \cos \theta d \theta
$$

$=2 \int_{\pi / 2}^{0} \frac{-(-a \sin \theta)(a-a \sin \theta)(-a \cos \theta) d \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}$
$=-2 \frac{a^{3}}{a} \int_{\pi / 2}^{0} \sin \theta(1-\sin \theta) d \theta$
$=2 \mathrm{a}^{2} \int_{0}^{\pi / 2}\left(\sin \theta-\sin ^{2} \theta\right) d \theta$
$=2 \mathrm{a}^{2}\left[1-\frac{1}{2} \cdot \frac{1}{2} \cdot \pi\right]$
$=2 \mathrm{a}^{2}\left[1-\frac{\pi}{4}\right]$
22.(C) When a curve joining $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ is revolved about x-axis, the area of the surface of revolution is given by

$$
\left.S[y(x)]=2 \pi \int_{x_{1}}^{x_{2}} y\left(1+y^{-2}\right)^{1 / 2} d x\right)
$$

Comparing this with $\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x$ and omitting the irrelevant factor 2π, we have

$$
F\left(x, y, y^{\prime}\right)=y\left(1+y^{\prime 2}\right)^{1 / 2}
$$

Since $F\left(x, y, y^{\prime}\right)$ is a function of y and y^{\prime} only, a first integral of Euler's equation is $F-y^{\prime}$ $\left(\partial F / \partial y^{\prime}\right)=$ constant $=C$
or $\quad y\left(1+y^{\prime}\right)^{1 / 2}-y^{\prime} x(y / 2) \times\left(1+y^{\prime 2}\right)^{-1 / 2} \times 2 y^{\prime}=C$
or $\quad y\left(1+y^{\prime 2}\right)-y^{\prime 2}=C\left(1+y^{\prime 2}\right)^{1 / 2}$
or $\quad y=C\left(1+y^{\prime 2}\right)^{1 / 2}$
or $\quad y^{\prime 2}=\frac{y^{2}-C^{2}}{C^{2}}$
or $\quad \frac{d y}{d x}=\frac{\left(y^{2}-C^{2}\right)^{1 / 2}}{C}$
Separating variables, $\quad \frac{d y}{\left(y^{2}-C^{2}\right)^{1 / 2}}=\frac{d x}{C}$
Integrating, $\cosh ^{-1}(y / C=x / C+b / C$ or $y=C \cosh \{(x+b) / C\}$ (1)
Where b and C are two arbitrary constants. (1) gives a two parameter family of catenaries.
23.(B)Let

$$
\begin{aligned}
I=\iint_{D} e^{x / y} d A \quad D & =\left\{(x, y) 1 \leq y \leq 2, y \leq x \leq y^{3}\right\} \\
\iint_{D} e^{x / y} d x d y & =\int_{1}^{2} \int_{y}^{y^{3}} e^{e^{/ y}} d x d y
\end{aligned}
$$

$$
=\left(\frac{1}{2} e^{y^{2}}-\frac{1}{2} y^{2} e^{1}\right)_{1}^{2}
$$

$$
=\frac{1}{2} e^{4}-2 e^{1}
$$

$$
=\frac{e^{4}-4 e}{2}
$$

24.(D) Since $\frac{1}{R}=\operatorname{Lim}_{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$

$$
=\operatorname{Lim}_{n \rightarrow \infty}\left|\frac{(x-6)^{n}}{n^{n}}\right|^{1 / n}
$$

$$
\begin{aligned}
& =\operatorname{Lim}_{n \rightarrow \infty}\left|\frac{x-6}{n}\right| \\
& =|x-6| \operatorname{Lim}_{n \rightarrow \infty} \frac{1}{n} \\
& \frac{1}{R}=0
\end{aligned}
$$

Radius of convergence is $R=\infty$
and since radius of convergence is regardless of the value of x so converges for entire real plane
25.(D)Let $f(x)=\cos \left(\frac{1}{2} \pi x\right), g(x)=\log x, a=x, b=1$.

Putting these values in Cauchy's mean value theorem,

$$
\begin{aligned}
& \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}, \quad a<c<b \text {, we get } \\
& \frac{\cos \frac{1}{2} \pi-\cos \frac{1}{2} \pi x}{\operatorname{lo1} 1-\log x}=\frac{-\frac{1}{2} \pi \sin \left(\frac{1}{2} \pi c\right)}{1 / c}, x<c>1 .
\end{aligned}
$$

Taking limits as $\mathrm{x} \rightarrow 1$ which implies thăt $\mathrm{c} \rightarrow 1$, we get

26.(B) Since $f(x, y, z)=\operatorname{siny} z+\ln \left(x^{2}\right)$
gradient of f is $\nabla f=\left(i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(\sin y z+\ln x^{2}\right)$

$$
=\frac{2}{x} i+z \cos (y z) \hat{j}+y \cos (y z) \hat{k}
$$

$[\nabla f]_{(1,1, \pi)}=2 \hat{i}+\pi \hat{j}-\hat{\mathrm{k}}$
unit vector in the direction $\hat{i}+\hat{j}-\hat{k}$ is

$$
\left(\frac{i+\hat{j}-\hat{k}}{\sqrt{3}}\right)
$$

so directional derivative

$$
\begin{aligned}
D(1,1, \pi) & =(2-\pi j-\hat{k}) \cdot \frac{(i+j-\hat{k})}{\sqrt{3}} \\
& =\frac{3-\pi}{\sqrt{3}}
\end{aligned}
$$

27.(B) Suppose $F_{1} d x+F_{2} d y+F_{3} d z=d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \phi}{\partial z} d z$ an exact differential Then since x, y and z are independent variables

$$
F_{1}=\frac{\partial \phi}{\partial x}, \quad F_{2}=\frac{\partial \phi}{\partial y} \quad F_{3}=\frac{\partial \phi}{\partial z}
$$

so

$$
F=F_{1} \hat{i}+F_{2} \hat{j}+F_{3} \hat{k}=\frac{\partial \phi}{\partial x} \hat{i}+\frac{\partial \phi}{\partial y} \hat{j}+\frac{\partial \phi}{\partial z} \hat{k}=\nabla \phi
$$

Thus
$\vec{\nabla} \times \vec{F}=\nabla \times \vec{\nabla} \phi=0$
now $\vec{F}\left(y^{2} z^{3} \cos x-4 x^{4} z\right) \hat{i}+\left(2 z^{3} y \sin x\right) \hat{j}+\left(3 y^{2} z^{2} \sin x-x^{4}\right) \hat{k}$ and $\vec{\nabla} \times \vec{F}$ is computed to be zero
so $\left(y^{2} z^{3} \cos x-4 x^{3} z\right) d x+2 z^{3} y \sin x d y+\left(3 y^{2} z^{2} \sin x-x^{4}\right) d z=d \phi$
$\Rightarrow \phi=y^{2} z^{3} \sin x-x^{4} z+$ constant
28.(A) $\frac{d y}{d x}=\frac{y \sin y / x 0 x}{x \sin y / x}$
or $V+x \frac{d V}{d x}=\frac{V \sin V-1}{\sin V}$

$$
\left(\because y=V x, \frac{d y}{d x}=V+x \frac{d V}{d x}\right)
$$

or $x \frac{d V}{d x}=\frac{V \sin V-1}{\sin V}-V$

$$
=\frac{-1}{\sin V}
$$

or $\sin V d V+\frac{d x}{x}=0$
Integrating, we obtain

$$
-\cos V+\log x=c
$$

Hence $\log x=\cos y / x+c$ is the required
solution.
29.(C) $\because \mathrm{f}^{\prime}(\mathrm{x})>0$
$\therefore f(x)$ is increasing function and also given $f(x)>0$ then graph of $f(x)$ is concave up.

Let $P\left(x_{1}, f\left(x_{1}\right)\right)$ and $Q\left(x_{2}, f\left(x_{2}\right)\right)$ be any two points on $y=f(x)$
Joining P and Q, if R the mid-point of $P Q$ then co-ordinates of R is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}\right)
$$

Draw perpendicular RM on x-axis. If $B M$ cuts the graph of $y=f(x)$ at L then co-ordinates of L are $\left(\frac{x_{1}+x_{2}}{2}, f\left(\frac{x_{1}+x_{2}}{2}\right)\right)$

It is clear from the graph that $M L<R M$
i.e. $(y$-co-ordinates of $L)<(y$-co-ordinates of $R)$
$\Rightarrow \quad f\left(\frac{x_{1}+x_{2}}{2}\right)<\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}$
30.(C) We first observe that the equation is exact in every rectangular domain D , since

$$
\frac{\partial M(x, y)}{\partial y}=-2 x \sin y+3 x^{2}=\frac{\partial N(x, y)}{\partial x}
$$

for all real (x, y).

Now, We must find F such that

$$
\frac{\partial F(x, y)}{\partial x}=M(x, y)=2 x \cos y+3 x^{2} y
$$

and

$$
\frac{\partial F(x, y)}{\partial x}=N(x, y)=x^{3}-x^{2} \sin y-y .
$$

Then

$$
\begin{aligned}
F(x, y) & =\int M(x, y) \partial x+\phi(y) \\
& =\int\left(2 x \cos y+3 x^{2} y\right) \partial x+\phi(y) \\
& =x^{2} \cos y+x^{3} y+\phi(y) \\
\frac{\partial F(x, y)}{\partial y} & =-x^{2} \sin y+x^{3}+\frac{d \phi(y)}{d y}
\end{aligned}
$$

But also

$$
\frac{\partial F(x, y)}{\partial y}
$$

$$
=N(x, y)=x^{3}-x^{2} \sin y-y
$$

and so

$$
\frac{d \phi(y)}{d y}=-y
$$

and hence

Thus

$$
F(x, y)=x^{2} \cos y+x^{3} y-\frac{y^{2}}{2}+c_{0} .
$$

Hence a one-parameter family of solutions is $F(x, y)=c_{1}$, which may be expressed as

$$
x^{2} \cos y+x^{3} y-\frac{y^{2}}{2}=c
$$

Applying the initial condition $y=2$ when $x=0$, we find $c=-2$. Thus the solution of the given initial-value problem is

$$
x^{2} \cos y+x^{3} y-\frac{y^{2}}{2}=-2
$$

31. (B) If $S_{1}=\sum \frac{(-1)^{n-1}}{n} x^{n}$

Take $v_{n}(x)=x_{n}$ and $u_{n}(x)=\frac{(-1)^{n-1}}{n}$
The sequence $\left\{\mathrm{v}_{\mathrm{n}}(\mathrm{x})\right\}$ is clearly uniformly bounded and monotonic non-increasing on $[0,1]$
Also the series $\sum \frac{(-1)^{n-1}}{n}$ is convergent.
Hence by Abel's test the given series (is uniformly convergent on $[0,1]$
(B) $M_{n}=\operatorname{Sup}\left\{\left|f_{n}(x)-f(x)\right|: x \in B\right\}$
here $\quad f(x)=\lim _{n \rightarrow \infty} \frac{n^{2} x}{1+n^{4} x^{2}}=0 \forall x \in[0,1]$
Therefore $\left|f_{n}(x)-f(x)\right|=\frac{n^{2}|x|}{1+n^{4} x^{2}}$

$$
M_{n}=\operatorname{Sup}\left\{\frac{n^{2}|x|}{1+n^{4} x^{2}}: x \in R\right\}
$$

$4 \geq \frac{n^{2} \frac{1}{n^{2}}}{1+n^{4} \frac{1}{n^{4}}}=\frac{1}{2}\left(\right.$ Taking $\left.x=\frac{1}{n^{2}} \in R\right)$
Hence $M n$ cannot tend to zero as $n \rightarrow \infty$ and consequently the sequence is non uniformly convergent by M_{n} test
(c) Here $f(x)=\lim _{n \rightarrow \infty} \frac{x}{1+n x^{2}}=0 \forall x \in(0,1)$

$$
M_{n}=\operatorname{Sup}\left\{f_{n}(x)-f(x) \mid\right\}=\operatorname{Sup}\left\{\frac{|x|}{\left|1+n x^{2}\right|}, x \in R\right\}
$$

for $\operatorname{Sup} \frac{d}{d x}\left(\frac{x}{1+n x^{2}}\right)=0$

$$
\Rightarrow \quad x=\frac{1}{\sqrt{x}}
$$

so $M_{n}=\operatorname{Sup}\left\{\frac{x}{1+n x^{2}}: x \in R\right\}$

$$
=\frac{1}{2 \sqrt{n}} M_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence sequence is uniformly convergent.
(D) $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$

$$
=\lim _{n \rightarrow \infty} x^{n-1}(1-x)=0 \quad \forall x \in[0,1]
$$

$$
y=\left|f_{n}(x)-f(x)\right|=x^{n-1}(1-x)
$$

for y is maximum $\frac{d y}{d x}=0$ gives $x=\frac{n-1}{n}$

$$
\frac{d^{2} y}{d x^{2}}=-v e \quad \text { at } x=\frac{n-1}{n}
$$

so $M_{n}=\max y=\left(1-\frac{1}{n}\right)^{n-1}\left(1-\frac{n-1}{n}\right) \rightarrow \frac{1}{e} \times 0=0$ as $n \rightarrow \infty$
Hence the sequence is uniformly convergent on $[0,1]$.
32.(B) Cayley hamilton Theorem This states that "every square matrix satisfies its characteristic equation"
we have $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$

$$
|A-\lambda|\left|=\left|\begin{array}{cc}
3-\lambda & -2 \\
4 & -2-\lambda
\end{array}\right|=0\right.
$$

Here,

$$
\begin{aligned}
\Rightarrow & (3-\lambda)(-2-\lambda)-4(-2)=0 \\
& -(3-\lambda)(\lambda+2)+8=0 \\
\Rightarrow & \lambda^{2}-\lambda-6+8=0 \\
\Rightarrow & \lambda^{2}-\lambda+2=0
\end{aligned}
$$

Hence, by Cayley Hamilton theorem

$$
A^{2}-A+2 I=0
$$

Comparing this with

$$
A^{2}-k A+2 l=0
$$

we get ,

$$
k=1
$$

33.(B) Given $f(x)$ is differentiable at $x=0$. Hence, $f(x)$ will be continuous at $x=0$.

$$
\begin{align*}
& \therefore \lim _{x \rightarrow 0^{-}}\left(e^{x}+a x\right)=\lim _{x \rightarrow 0^{+}} b(x-1)^{2} \\
& \Rightarrow e^{0}+a \times 0=b(0-1)^{2} \Rightarrow b=1 \tag{1}
\end{align*}
$$

But $f(x)$ is differentiable at $x=0$, then
$L f^{\prime}(x)=R f^{\prime}(x) \Rightarrow \frac{d}{d x}\left(e^{x}+a x\right)=\frac{d}{d x} b(x-1)^{2}$
$\Rightarrow \mathrm{e}^{\mathrm{x}}+\mathrm{a}=2 \mathrm{~b}(\mathrm{x}-1)$
At $x=0, e^{0}+a=-2 b \Rightarrow a+1=-2 b$
$\Rightarrow \quad a+1=-2 \Rightarrow a=-3$
Hence $f(x)$ is differentiable at
$x=0$, then $(a, b)=(-3,1)$
34.(C) Here,

$$
\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+a^{2} y=f(x)
$$

$\therefore e^{a x} u(x)$ is a particular integral of it. So, it will satisfy the Eq. (i) and $y=e^{a x} u(x)$.
$\therefore \quad \frac{d}{d x}\left\{e^{a x} u(x)\right\}=e^{a x} u^{\prime}(x)+a e^{a x} u(x)$
and $\frac{d^{2}}{d x^{2}}\left\{e^{a x} u(x)\right\}=e^{a x} \cdot u^{\prime \prime}(x)+u^{\prime}(x) \cdot a e^{a x}+a\left\{e^{a x} \cdot u^{\prime}(x)+u(x) \cdot a e^{a x}\right\}$

$$
=e^{a x} u{ }^{\prime \prime}(x)+a e^{a x} u^{\prime}(x)+a e^{a x} u^{\prime}(x)+a^{2} e^{a x} u(x)
$$

$$
=e^{a x} u "(x)+2 a e^{a x} u^{\prime}(x)+a^{2} e^{a x} u(x)
$$

Substituting these values in above equation we get

$$
e^{a x} u u^{\prime \prime}(x)+2 a e^{a x} u^{\prime}(x)+a^{2} e^{a x} u(x)
$$

$2 a\left\{e^{a x} u^{\prime}(x)+a e^{a x} u(x)\right\}+a^{2} e^{a x} u(x)=f(x)$
$=e^{a x} u{ }^{\prime \prime}(x)+2 a e^{a x} \cdot u^{\prime}(x)+a^{2} e^{a x} u(x)-2 a e^{a x} u^{\prime}(x)$
$-2 a^{2} e^{a x} u(x)+a^{2} e^{a x} u(x)=f(x)$
or $\quad e^{a x} \cdot u "(x)=f(x)$
or

$$
u^{\prime \prime}(x)=\frac{f(x)}{e^{a x}}=f(x) \cdot e^{-a x}
$$

or

$$
\frac{d^{2} u}{d x^{2}}=f(x) \cdot e^{-a x}
$$

35.(A) Here, it is given that a family of circle haying the radius r and centre on the x-axis.
\therefore Equation of family of circle whose radius is r and centre $(a, 0)$ lie on x - $a x i s$ is

$$
\begin{equation*}
(x-a)^{2}+y^{2}=r^{2} \tag{i}
\end{equation*}
$$

Now, differentiating it w.r.t. x, we get

of $2(x-a)=-2 y \frac{d y}{d x}$

$$
(x-a)=-y \frac{d y}{d x}
$$

Now substituting this value in Eq. (i), we get

$$
\left(-y \frac{d y}{d x}\right)^{2}+y^{2}=r^{2}
$$

$$
\begin{aligned}
& y^{2}\left(\frac{d y}{d x}\right)^{2}+y^{2}=r^{2} \\
& y^{2}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=r^{2}
\end{aligned}
$$

36.(D) for the power series we know that the following results
i) Power series diverges for every value of x other than 0
ii) The power series converges for every value of x.
iii) If there exists a positive number R such that the power series converges for every x than $|x|<R$, where R is the radius of convergence of the power series. and diverges for every x s.t. $|x| \geq R$.

Here given that power series $\sum_{n=0}^{\infty} a_{n} x^{n}$
converges to 5 i.e. $|5|<R \Rightarrow R>5$
37.(A) From the given integral, inequalities that define this region are,

$$
\begin{aligned}
& 0 \leq x \leq 3 \\
& x^{2} \leq y \leq 9
\end{aligned}
$$

These inequalities tellus that we want the region with $y=x^{2}$ on the lower boundary and $y=$ 9 on the upper boundary that lies between $x=0$ and $x=3$.

Since we want to integrate with respect to x first determine limits of x (probably in term of y) and then get the limits on the y's.

$$
\begin{aligned}
& 0 \leq x \leq \sqrt{y} \\
& 0 \leq y \leq 9
\end{aligned}
$$

Any horizontal line drawn in this region will start at $x=0$ and end at $x=\sqrt{y}$ and so these are the limits on the x's and the range of y's for the regions is 0 to 9 .

The integral, with the order reversed, is now,

$$
\begin{aligned}
& \int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} d y d x=\int_{0}^{9} \int_{0}^{\sqrt{y}} x^{3} e^{y^{3}} d x d y \\
&=\left.\int_{0}^{9} \frac{1}{4} x^{4} e^{y^{3}}\right|_{0} ^{\sqrt{y}} d y \\
&=\int_{0}^{9} \frac{1}{4} y^{2} e^{y^{3}} d y \\
&=\left.\frac{1}{12} e^{y^{3}}\right|_{0} ^{9} \\
&=\frac{1}{12}\left(e^{729}-1\right)
\end{aligned}
$$

38. (B) Given function is

Substituting these values in
$f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{\underline{\underline{2}}} f^{\prime \prime}(\theta x)$
$(1-x)^{5 / 2}=1+x \cdot\left(-\frac{5}{2}\right)+\frac{x^{2}}{\underline{2}} \cdot \frac{15}{4}(1-\theta x)^{1 / 2}$

Taking as $x \rightarrow 1$, we get
$0=1-\frac{5}{2}+\frac{1}{\underline{2}} \cdot \frac{15}{4}(1-\theta)^{1 / 2}$.
or, $(1-\theta)^{1 / 2}=\frac{4}{5}$
or, $1-\theta=\frac{16}{25}$
$\therefore \quad \theta=\frac{9}{25}$
$\therefore \quad$ The correct answer is (B)
39.(A) Let $s_{n}=\sum_{k=1}^{n} u_{k}, t_{n}=\sum_{k=1}^{n} M_{k}$. Then, for $m>n \geq N_{1}$,

$$
\begin{align*}
\left|s_{m}(x)-s_{n}(x)\right| & =\left|\sum_{k=n+1}^{m} u_{k}(x)\right| \leq \sum_{k=n+1}^{m} \mid u_{k}(x) \\
& \leq \sum_{k=n+1}^{m} M_{k}=t_{m}-t_{n} \quad \quad(x \in E) \tag{1}
\end{align*}
$$

since $\sum_{k=1}^{\infty} M_{k}<\infty,\left\{t_{n}\right\}_{n=1}^{\infty}$ is a converging sequence and hence a cauchy sequence. Thus given $\in>0$, there exists
$N \geq N_{1}$ such that

$$
-t_{D} k \in \quad(m, n \geq N) .
$$

But then (1) implies

$$
\left|s_{m}(x)-s_{n}(x)\right|<\epsilon \quad(m, n \geq N ; x \in E) .
$$

$\left\{s_{n}\right\}_{n=1}^{\infty}$ converges uniformly on E. This means that $\sum_{k=1}^{\infty} u_{k}$ converges uniformly on E,
40.(C) parametric equations of the sphere are

$$
\begin{aligned}
& x=a+p \sin \theta \cos \phi, y=b+\rho \sin \theta \sin \phi \\
& z=c+\rho \cos \theta
\end{aligned}
$$

and to cover the whole sphere, r varies from 0 to p, θ varies from 0 to π and ϕ from 0 to 2π.

$$
\begin{aligned}
\therefore \int_{s}\left(l x^{2}+\right. & \left.m y^{2}+n z^{2}\right) d s=\int_{s}\left(x^{2} i+m y^{2} j+n z^{2} k\right) \cdot N d s \\
& =\int_{v} \operatorname{div}\left(x^{2} i+y^{2} j+z^{2} k\right) d v \\
& =2 \int_{v}(x+y+z) d v \\
& =2 \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{p}[(a+b+c)+p(\sin \theta \cos \phi+\sin \theta \sin \phi+\cos \theta)] \times r^{2} \sin \theta d p \cdot d \theta d \phi \\
& =2(a+b+c) \frac{p^{3}}{3}|-\cos \theta|_{0}^{\pi} \cdot 2 \pi \\
& =\frac{8 \pi}{3}(a+b+c) p^{3}
\end{aligned}
$$

41. Given $y=e^{x^{2}}$ is an integral belonging to the C.F. of the given equation.

$$
\begin{equation*}
\therefore \text { Let } \mathrm{y}=\mathrm{ze}^{\mathrm{x}^{2}} \tag{i}
\end{equation*}
$$

be the complete solution of the given equation, where z is a function of x to be determined.
From (i), $y_{1}=z_{1} e^{x^{2}}+2 x e^{x^{2}} z$,

$$
\left.y_{2}=z_{2} e^{x^{2}}+4 x e^{x^{2}} z_{1}+2 z\left(1+2 x^{2}\right) e^{x^{2}}\right)
$$

Substituting these values of y_{2}, y_{1} and y in the given equation, we get

$$
x\left[z_{2}+4 x z_{1}+2\left(1+2 x^{2}\right) z\right]-\left[z_{1}+2 x z\right]-4 x^{3} z=-4 x^{5} e^{-x^{2}}
$$

or

$$
\begin{aligned}
& \text { or } \quad \frac{x z_{2}+\left(4 x^{2}-1\right) z_{1}+\left[2 x\left(1+2 x^{2}\right)-2 x-4 x^{3}\right] z=-4 x^{5} e^{-x^{2}}}{\text { or } \frac{d z_{1}}{d x}+\left(4 x-\frac{1}{x}\right) z_{1}=-4 x^{4} e^{-x^{2}}}
\end{aligned}
$$

Which is a linear equation of first order in z_{1}.
Its integrating factor $=\mathrm{e}^{\int[4 x-(11 x)] d x}=\mathrm{e}^{2 x^{2}-\log \mathrm{x}}$

$$
=e^{2 x^{2}} \times e^{-\log x}=(1 / x) e^{2 x^{2}}
$$

\therefore Its solution is $z_{1} \cdot(1 / x) e^{2 x^{2}}=c_{1}-4 \int x^{4} e^{-x^{2}} \cdot(1 / x) e^{2 x^{2}} d x$
or

$$
\begin{aligned}
& z_{1}(1 / x) e^{2 x^{2}}=c_{1}-4 \int x^{3} e^{x^{2}} d x \\
& =c_{1}-2 \int t e^{t} d t, \text { putting } x^{2}=t \\
& =c_{1}-2\left[t e^{t}-\int 1 \cdot e^{t} d t\right]=c_{1}-2 t e^{t}+2 e^{t} \\
& =c_{1}-2 x^{2} e^{x^{2}}+2 e^{x^{2}}
\end{aligned}
$$

or

$$
\begin{array}{ll}
\text { or } & z_{1}=x\left[c_{1} e^{-2 x^{2}}-2 x^{2} e^{-x^{2}}+2 e^{-x^{2}}\right] \\
\text { or } & d z=\left(c_{1} x e^{-2 x^{2}}-2 x^{3} e^{-x^{2}}+2 x e^{-x^{2}}\right) d x \\
& =\left(-\frac{1}{2} c_{1} e^{2 t}-t e^{t}-e^{t}\right) d t, \text { putting }-x^{2}=t
\end{array}
$$

Integrating, $z=c_{2}-\frac{1}{4} c_{1} e^{2 t}-\int t e^{t} d t-e^{t}$

$$
\begin{aligned}
& =c_{2}-\frac{1}{4} c_{1} e^{2 t}-\left[t e^{t}-\int 1 \cdot e^{t} d t\right]-e^{t} \\
& =c_{2}-\frac{1}{4} c_{1} e^{2 t}-t e^{t}+e^{t}-e
\end{aligned}
$$

or

$$
z=c_{2}-\frac{1}{4} c_{1} e^{-2 x^{2}}+x^{2} e^{-}
$$

Substituting this value of z in (i), the required solution is

$$
y=c_{2} e^{x^{2}}-\frac{1}{4} c_{1} e^{-x^{2}}+x^{2},
$$

where c's are arbitrary constants.
42. (a) (i) For any $x=a$,
L.H.L $=\lim _{x \rightarrow a^{-}} f(x)=\lim _{h \rightarrow 0} f(a-h)$ and R.H.L. $=\lim _{x \rightarrow a^{+}} f(x)=\lim _{h \rightarrow 0} f(a+h)$

Hence $f(x)$ oscillates between 0 and 1 as x is rational or irrational
\therefore L.H.L. and R.H.L do not exist.
$\Rightarrow f(x)$ is discontinuous at a point $x=a$ for all values of a.
(ii) For any $\mathrm{x}=\mathrm{a}$,
$\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a$ (when $x \rightarrow a$ through rational values)
and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}(1-x)=1-a$
(when $x \rightarrow$ a through irrational values)
Now $\lim _{x \rightarrow a}$ will exist only when $\mathrm{a}=1-\mathrm{a}$
$\Rightarrow \mathrm{a}=\frac{1}{2}$
Thus if $x \neq \frac{1}{2}$, then $\lim _{x \rightarrow a} f(x)$ will not exist.
Hence $f(x)$ is discontinuous when $a \neq \frac{1}{2}$.
Hence $f(x)$ is continuous at $x=\frac{1}{2}$.
(b) Let $A=\left|\begin{array}{lll}x+2 & x+3 & x+a \\ x+4 & x+5 & x+b \\ x+6 & x+7 & x+c\end{array}\right|$

Applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$, we get,

$$
\Rightarrow A=\left|\begin{array}{lll}
x+2 & 1 & x+a \\
x+4 & 1 & x+b \\
x+6 & 1 & x+c
\end{array}\right|
$$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$

given a, b, are in A.P. $\Rightarrow A=0$.
Trick: Let a, b, c are in A.P. Put $a=4, b=5, c=6$

$$
\left|\begin{array}{ccc}
x+2 & x+3 & x+4 \\
x+4 & x+5 & x+6 \\
x+6 & x+7 & x+8
\end{array}\right|
$$

$$
\left|\begin{array}{lll}
\mathrm{x}+2 & 1 & 1 \\
\mathrm{x}+4 & 1 & 1 \\
\mathrm{x}+6 & 1 & 1
\end{array}\right|=0\left[\mathrm{C}_{1} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{2}\right]
$$

43. The given system of equations is equivalent to a single matrix equation

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \tag{1}\\
1 & 2 & 4 \\
1 & 4 & 10
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
\mu \\
\mu^{2}
\end{array}\right]
$$

Applying row operations $R_{21}(-1)$ and $R_{31}(-1)$ to the coefficient matrix and also to the matrix on R. H. S. of (1), we get

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 3 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
\mu-1 \\
\mu^{2}-1
\end{array}\right]
$$

Again, applying the row operation $R_{32}(-3)$, we get

$$
\left[\begin{array}{lll}
1 & 1 & 1 \tag{2}\\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
\mu-1 \\
\mu^{2}-3 \mu+2
\end{array}\right]
$$

This is equivalent to the following system of equations.

$$
\begin{gather*}
x+y+z=1 \tag{a}\\
y+3 z=\mu-1 \tag{3}\\
0=\mu^{2}-3 \mu+2
\end{gather*}, \ldots \ldots\left(\begin{array}{c}
\ldots . . .(\mathrm{c}) \\
\ldots(c)
\end{array}\right\}
$$

The last equation of (3) i.e. (3c) represents the condition for the given system of equations to be consistent. From (3c) we have
or

$$
\mu^{2}-3 \mu+2=0
$$

i.e. either

$$
(\mu-1)(\mu-2)=0
$$

Case (i) When $\mu=1$
Then (3a) and (3b) take the form

$$
x+y+z=1
$$

$$
y+3 z=0
$$

which yields

$$
\begin{aligned}
& y=-3 z \\
& x=1-(-3 z)-z=1+2 z
\end{aligned}
$$

If $z=a$, where a is any arbitrary number, then

$$
\left.\begin{array}{l}
x=1+2 a \tag{4}\\
y=-3 a \\
z=a
\end{array}\right\}
$$

This is the required solution in case $\mu=1$.
Case (ii) When $\quad \mu=2$.
Then (3a) and (3b) take the form

$$
x+y+z=1
$$

$$
y+3 z=1
$$

These equations yield

$$
\begin{aligned}
& y=1-3 z \\
& x=1-(1-3 z)-z=2 z
\end{aligned}
$$

If $z=b$, where b is any arbitrary number, then

$$
\left.\begin{array}{l}
x=2 b \\
y=1-3 b \\
z=b
\end{array}\right\}
$$

This is the required solution for $\mu=2$.
As a and bare arbitrary numbers, the solutions (4) and (5) represent an infinite number of solutions.
44. (a) The normal to the ellipsoid is along the direction of grad $\left(a x^{2}+b y^{2}+c z^{2}\right)=2(a x i+b y \mathbf{j}+$ czk).
$\therefore \quad n=(a x i+b y j+c z k) /\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)^{1 / 2}$.
Now comparing the given integral with F.n, it can be easily found that $\mathbf{F}=\mathbf{x i}+\mathbf{y i}+\mathbf{z k}$ on the ellipsoid
$a x^{2}+b y^{2}+c z^{2}=1$.
$\therefore \quad$ the surface integral

$$
\begin{aligned}
& \iint_{S}\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)^{-\frac{1}{2}} d S \\
& =\iint_{S}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) \cdot(a x \mathbf{i}+b y \mathbf{j}+c z \mathbf{k}) /\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)^{\frac{1}{2}} d S=\iint_{S} \text { F.ndS } \\
& \left.=\int_{V} \operatorname{div} \mathbf{F d V} \text {, (By divergence theorem }\right) . \\
& =3 \int_{V} d V=3 V=3 \times \text { volume of ellipsoid. }
\end{aligned}
$$

To find the volume V, the eqn. of the ellipsoid $a x^{2}+b y^{2}+c z^{2}=1$ can be written as

$$
\begin{array}{ll}
& \frac{x^{2}}{(1 / \sqrt{a})^{2}}+\frac{y^{2}}{(1 / \sqrt{b})^{2}}+\frac{z^{2}}{(1 / \sqrt{c})^{2}}=1 \\
\therefore & V=\frac{4 \pi}{3}\left(\frac{1}{\sqrt{a}} \cdot \frac{1}{\sqrt{b}} \cdot \frac{1}{\sqrt{c}}\right)=\frac{4 \pi}{3 \sqrt{a b c}} \\
\therefore & \iint_{S}\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)^{-\frac{1}{2}} d S=\frac{4 \pi}{\sqrt{a b c}} .
\end{array}
$$

(b) The parametric equation of the plane is $x=u, y=v, z=1-u-v$.

Then $\mathbf{r}=\mathbf{u i}+v \mathbf{j}+(1-u-v) \mathbf{k}$ and $d \mathbf{S}=\mathbf{n d S}=\mathbf{r}_{\mathbf{u}} \times \mathbf{r}_{\mathbf{v}} d u d v$
$=(1,0,-1) \times(0,1,-1) d x d y[\because x=u$ and $y=v$ as taken $]$
$\therefore \quad d s=(1,1,1) d x d y$
Also curl $\mathbf{f}=(2,2,-1)$

Website: www.vpmclasses.com

$$
\begin{equation*}
=\iint_{A O B} 3 \mathrm{dxdy}=3 \int_{0}^{1} \int_{0}^{1} \mathrm{dxdy}=\frac{3}{2}, \tag{1}
\end{equation*}
$$

The above result can also be obtained easily as the area of $\Delta \mathrm{AoB}=\frac{1}{2}$
The positive sense of C is ABC corresponding to the direction of n and

$$
\begin{aligned}
& \int_{C} f \cdot d r=\int_{A B C}(2 y+z) d x+(x-z) d y+(y-x) d z \\
& =\int_{A B}+\int_{B C}+\int_{C A}
\end{aligned}
$$

Now equation of $A B$ is $x+y=1, z=0$ and so,

$$
\begin{aligned}
& \int_{A B}=\int_{A B}(2 y d x+x d y) \\
& =\int_{1}^{0}[(2-2 x) d x-x d x]=-\frac{1}{2} ; \text { Similarly, } \int_{C A}=1 . \\
\therefore \quad & \int_{C} f \cdot d r=-\frac{1}{2}+1+1=\frac{3}{2} . \\
\therefore \quad & \int_{C} f \cdot d r=\iint_{S} \mathbf{n} . \operatorname{curl} f d S=\frac{3}{2} .
\end{aligned}
$$

Thus the theorem is verified from (1) and (2).
45. (a) We have

$$
u_{n}^{2}-u_{n-1}^{2}=\left(k+u_{n-1}\right)-\left(k+u_{n-2}\right)=u_{n-1}-u_{n-2}
$$

so that $u_{n}>$ or $<u_{n}-1$ according as $u_{n-1}>$ or $<u_{n-2}$ and thus $\left\{u_{n}\right\}$ is a monotonic sequence; it is inereasing or decreasing sequence according as $u_{2}>$ or $<u_{1}$. Now

$$
\begin{align*}
& x^{2}-x-k \equiv(x-\alpha)(x+\beta) \tag{1}\\
& u_{1}{ }^{2}-u_{1}-k=\left(u_{1}-\alpha\right)\left(u_{1}+\beta\right) .
\end{align*}
$$

so that
Let $u_{1}>\alpha$; then $u_{1}{ }^{2}-u_{1}-k>0$, so that $u_{2}=\sqrt{ }\left(u_{1}+k\right)<u_{1}$.
Therefore $\left\{u_{n}\right\}$ is a decreasing sequence.
Now

$$
u_{n}^{2}=u_{n-1}+k>u_{n}+k,
$$

$$
\left[\because u_{n}<u_{n-1}\right]
$$

i.e.

$$
u_{n}^{2}-u_{n}-k>0
$$

$$
\begin{equation*}
\therefore \quad \text { from }(1), u_{n}^{2}-u_{n}-k=\left(u_{n}-\alpha\right)\left(u_{n}+\beta\right)>0 . \tag{2}
\end{equation*}
$$

Hence $\quad u_{n}>\alpha$.
Since u_{1} is + ve. $u_{2}, u_{3}, \ldots ., u_{n}, \ldots$, are all + ve by virtue of the relation $u_{n}=\left(k+u_{n-1}\right)$. Hence $\left\{u_{n}\right\}$ is bounded, being a monotonic decreasing sequence of positive terms. It follows that $\left\{u_{n}\right\}$ is convergent.

Hence $u_{n} \rightarrow a$ is finite limit, say I. Clearly from (2). I $\geq \alpha$.
Now $\left(u_{n}-\alpha\right)\left(u_{n}+\beta\right)=u_{n}{ }^{2}-u_{n}-k=\left(u_{n-1}+k\right)-u_{n}-k$.
Proceeding to the limit, we get

$$
(\ell-\alpha)(\ell+\beta)=\ell-\ell=0
$$

or $\quad I=\alpha \quad$ for $I \neq-\beta$, which is $<\alpha$.
Hence I is equal to the positive root α of the equation

$$
x^{2}=x+k
$$

(b) Given that $\mathrm{f}(0)=0$ and $\mathrm{f}^{\prime}(0)=1$

$$
\begin{aligned}
& \text { then } \lim _{x \rightarrow 0} \frac{1}{x}\{f(x)+f(x / 2)+\ldots+f(x / k)\} \\
& =\lim _{x \rightarrow 0}\left\{\frac{f(x)-f(0)}{x}+\frac{1}{2} \frac{f(x / 2)-f(0)}{x / 2}+\ldots \ldots+\frac{1)(x / k)-f(0)}{x / k}\right\}
\end{aligned}
$$

$$
\left.=\lim _{x \rightarrow a} f(0)+\frac{1}{2} f^{\prime}(0)+y+\frac{1}{k} f^{\prime}(0)\right\}
$$

$$
\frac{1}{2}(1)+\frac{1}{3}(1)+\ldots \ldots+\frac{1}{k}(1) \quad\left[\because f^{\prime}(0)=1\right]
$$

$$
=1+\frac{1}{2}+\frac{1}{3}+\ldots .+\frac{1}{k}
$$

46. We have

$$
\mathrm{T}\left(\alpha_{1}\right)=\mathrm{T}(1,0,1)=(4,-2,3)
$$

Now our aim is to express $(4,-2,3)$ as a linear combination of the vectors in the basis $\mathrm{B}=$ $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.

Let

$$
\begin{aligned}
(a, b, c) & =x \alpha_{1}+y \alpha_{2}+z \alpha_{3} \\
& =x(1,0,1)+y(-1,2,1)+z(2,1,1) \\
& =(x-y+2 z, 2 y+z, x+y+z)
\end{aligned}
$$

Then $x-y+2 z=a, 2 y+z=b, x+y+z=c$
solving these equations, we get

$$
\begin{equation*}
x=\frac{-a-3 b+5 c}{4}, y=\frac{b+c-a}{4}, z=\frac{b-c+a}{2} \tag{1}
\end{equation*}
$$

Putting $a=4, b=-2, c=3$ in (1), we get

$$
\begin{aligned}
& x=\frac{17}{4}, y=-\frac{3}{4}, z=-\frac{1}{2} \\
& \therefore \quad T\left(\alpha_{1}\right)=\frac{17}{4} \alpha_{1}-\frac{3}{4} \alpha_{2}-\frac{1}{2} \alpha_{3}
\end{aligned}
$$

Also $\mathrm{T}\left(\alpha_{2}\right)=\mathrm{T}(-1,2,1)=(-2,4,9)$ putting

$$
\begin{aligned}
& a=-2, b=4, c=9 \text { in }(1), \text { we get }) x=\frac{35}{4}, y=\frac{15}{4}, z=\frac{-7}{2}, \\
\therefore \quad & T\left(\alpha_{2}\right)=\frac{35}{4} \alpha_{1}+\frac{15}{4} \alpha_{2}-\frac{7}{2} \alpha_{3}
\end{aligned}
$$

Finally $T\left(\alpha_{3}\right)=T(2,1,1)=(7,-3,4)$ Putting

$$
a=7, b=-3, c 4 \text { in (1), we get } x=\frac{11}{2}, y=-\frac{3}{2}, z=0
$$

$$
T\left(\alpha_{3}\right)=\frac{11}{2} \alpha_{1}-\frac{3}{2} \alpha_{2}+0 \alpha_{3}
$$

$\left[\begin{array}{ccc}17 / 4 & -3 / 4 & -1 / 2 \\ 35 / 4 & 15 / 4 & -7 / 2 \\ 11 / 2 & -3 / 2 & 0\end{array}\right]$
47. Let $o(p)=p^{n}, P^{n+1} o(G)$

Now (px) $P_{i}=P_{x} P_{i}$

$$
\begin{aligned}
& =\mathrm{P}_{\mathrm{e}} \\
& =\mathrm{P}
\end{aligned}
$$

[p is normal in $N(P)$ and $x \in N(P)$]
$\Rightarrow \quad \mathrm{o}\left(\mathrm{P}_{\mathrm{x}}\right) \mid \mathrm{P}^{\mathrm{i}}$
$\Rightarrow \quad o\left(P_{n}\right)=P^{r}, \quad j \geq 0$
Let $j>0, \bar{K}=<P x>\leq N \frac{(P)}{P}$
s.t. o $(\bar{K})=P^{j}$

Since $(\bar{K}) \leq N \frac{(P)}{P}, \bar{K}=\frac{K}{P}$ where

$$
\begin{aligned}
\mathrm{K} & \leq \mathrm{N}(\mathrm{P}) \\
\mathrm{Pj}^{j} & =\mathrm{o}(\mathrm{k}) \\
& =\frac{o(k)}{o(p)}=\frac{o(k)}{\mathrm{P}^{n}} \\
\Rightarrow \quad o(K) & =P^{n+i}, j>0
\end{aligned}
$$

But o(k) |o(N(P))|O(G)
$\Rightarrow P^{n+j} \mid o(G), j>0$ is
a contradiction
$\therefore 1=0 \Rightarrow O(p x)=P)=1$
$\Rightarrow P_{x}=P \Rightarrow x \in P$.
48. (a) Given that $|A|=1$
i.e. $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=1 \Rightarrow a d-b c=1$
then characteristic equation of A is

$$
\begin{aligned}
|A-\lambda I|= & \Rightarrow\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right|=0 \\
& \Rightarrow(a-\lambda)(d-\lambda)-b c=0 \\
& \Rightarrow a d-b c-\lambda(a+d)+\lambda^{2}=0
\end{aligned}
$$

1]

$$
\Rightarrow \lambda^{2}-\lambda(a+d)+1=0
$$

$$
\therefore \quad \lambda=\frac{+(\mathrm{a}+\mathrm{d}) \pm \sqrt{(\mathrm{a}+\mathrm{d})^{2}}-4}{2}
$$

Since λ is not real if and only if

$$
\begin{aligned}
(a+d)^{2}-4 & <0 \\
\Rightarrow(a+d)^{2} & <4
\end{aligned}
$$

(b) Given $f=x^{2}-y^{2}+3 z^{2}$

Now $\quad \nabla f=2 x \hat{i}-2 y \hat{j}+6 z \hat{k}$

$$
=-2 \hat{i}-4 \hat{j}+6 \hat{k} \operatorname{atr} M(-1,2+1)
$$

Also

$$
\begin{aligned}
& \vec{M} N=\vec{O} N-O M=(3 \hat{i}+5 \hat{k})-(-\hat{i}+2 \hat{j}+\hat{k} \\
& =4 \hat{i}+2 \hat{j}-4 \hat{k}
\end{aligned}
$$

unit vector along $\vec{M} N$,

$$
\frac{1}{3}(2 \hat{i}+\hat{j}-2 \hat{k})
$$

Therefore, direction derivative of f in the direction MN

$$
\begin{aligned}
& (\nabla f) \cdot n \\
& (-2 \hat{i}-4 \hat{j}+6 \hat{k}) \cdot \frac{1}{3}(2 \hat{i}+\hat{j}-2 \hat{k})
\end{aligned}
$$

$$
\frac{1}{3}(-4-4-12)=\frac{-20}{3}
$$

The direction derivative of f is maximum in the direction of the normal to the given surface.
The magnitude of this maximum

$$
\begin{aligned}
& =|\nabla f|=\sqrt{(-2)^{2}+(-4)^{2}+(6)^{2}} \\
& =\sqrt{56}=2 \sqrt{14}
\end{aligned}
$$

49. Condition (ii) of the existence of $f^{n}(C)$ implies that $f^{\prime}, f^{\prime \prime}, \ldots, f^{n-1}$ all exit and are continuous at c. Also continuity at c implies the existence of $f, f^{\prime}, \ldots, f^{n-1}$ in a certain neighborhood $] \mathrm{c}-\delta_{1}, \mathrm{c}+\delta_{1}\left[\right.$ of $\mathrm{c},\left(\delta_{1}>0\right)$.

As $\mathrm{fn}^{\mathrm{n}}(\mathrm{C}) \neq 0$ there exists a neighborhood $] \mathrm{c}-\delta, \mathrm{C}+\delta\left[,\left(0<\delta<\delta_{1}\right)\right.$ such that for $\mathrm{f}^{\mathrm{n}}(\mathrm{C})>0$,
and

$$
\left.\begin{array}{c}
\mathrm{f}^{\mathrm{n}-1}(\mathrm{x})<\mathrm{f}^{\mathrm{n}-1}(\mathrm{c})=0, \mathrm{x} \in \mathrm{c} \mathrm{c}-\delta, \mathrm{c}[\tag{1}\\
\left.\mathrm{f}^{\mathrm{n}-1}(\mathrm{x})>\mathrm{f}^{\mathrm{n}-1}(\mathrm{c})=0, \mathrm{x} \in\right] \mathrm{c}, \mathrm{c}+\delta[
\end{array}\right\}
$$

and for $\mathrm{f}^{\mathrm{n}}(\mathrm{C})<0$,
and

$$
\begin{equation*}
\left.f^{n-1}(x)>f^{n-1}(c)=0 x \in\right] c-\delta, c[\} \tag{2}
\end{equation*}
$$

Again for any real number h where $|\mathrm{h}|<\delta$ we have by Taylor's Theorem

$$
f(c+h) f(c)=h!^{\prime}(c)+\frac{h^{2}}{2!} f^{\prime \prime}(c)+\ldots+\frac{h^{n-1}}{(n-1)!} f^{n-1}(c+\theta h), 0<\theta<1
$$

or

$$
\begin{equation*}
f(c+b)-f(c)=\frac{h^{n-1}}{(n-1)} f^{n-1}(c+\theta h) \tag{3}
\end{equation*}
$$

where $c+\theta h e] c-\delta, c+\delta[$.
For n odd: Clearly $\mathrm{h}^{\mathrm{n}-1}>0$ for any real number h , and further :
(i) When $\mathrm{f}^{\mathrm{n}}(\mathrm{C})>0$, we deduce from (1) that for h negative, $(\mathrm{c}+\theta \mathrm{h})$ is in $[\mathrm{c}-\delta, \mathrm{c}[$, and so

$$
\mathrm{f}^{\mathrm{n}-1}(\mathrm{c}+\theta \mathrm{h})>0 \text {, and for } \mathrm{h} \text { positive, } \mathrm{f}^{\mathrm{n}-1}(\mathrm{c}+\theta \mathrm{h})>0 .
$$

Thus from (3)

$$
\mathrm{f}(\mathrm{c}+\mathrm{h})<\mathrm{f}(\mathrm{C}) \text {, when } \mathrm{c}-\delta<\mathrm{c}+\mathrm{h}<\mathrm{c}
$$

and

$$
\mathrm{f}(\mathrm{c}+\mathrm{h})>\mathrm{f}(\mathrm{C}), \quad \text { when } \mathrm{c}<\mathrm{c}+\mathrm{h}<\mathrm{c}+\delta
$$

Thus $f(C)$ is not an extreme value
(ii) when $f^{n}(C)<0$, it may similarly be shown that $f(C)$ is not an extreme value .

For n even : As $\mathrm{h}^{\mathrm{n}-1}$ is positive or negative according to that h is positive of negative, we deduce from (1) and (3) that if $\mathrm{f}^{\mathrm{n}}(\mathrm{C})>0$ then for every point $\left.\mathrm{x}=\mathrm{c}+\mathrm{h} \in\right] \mathrm{c}-\delta, \mathrm{c}+\delta[$ except c ,

$$
f(c+h)>f(C)
$$

i.e. $f(C)$ is a minimum value.

It may similarly be deduced from (1) and (3) that $f(C)$ is a maximum value if $\mathrm{f}^{\mathrm{n}}(\mathrm{C})<0$.
50. (a) Let $\mathrm{h} \in \mathrm{H}$ and $\mathrm{a} \in G$. Then
$\theta\left(\mathrm{aha}^{-1}\right)=\theta(\mathrm{a})(\mathrm{h}) \theta(\mathrm{a})^{-1}=$
(a) θ
(a) $)^{-1}$
(as G^{\prime} is abelian)

$$
=\theta(\mathrm{h})
$$

\qquad

Thus $\theta\left(\mathrm{aha}^{-1} \mathrm{~h}^{-1}\right)=\theta$ (a) $\theta(\mathrm{h}) \theta\left(\mathrm{a}^{-1}\right) \theta(\mathrm{h})^{-1}=e$

SO

$$
a h a^{-1} \in h^{-1} \operatorname{Ker} \theta \subset H
$$

Hence ana ${ }^{-1} \mathrm{H}$ and so H is normal.
(b) Let

$$
\begin{aligned}
& A=\left[a_{i j}\right] n \times n \\
& B=\left[b_{i j}\right] n \times n
\end{aligned}
$$

be two arbitrary elements of \mathbf{W}, then

$$
A M=M A
$$

and $\mathbf{B M}=\mathbf{M B}$
If $x, y \in F$, then

$$
\begin{aligned}
(x \mathbf{A}+y \mathbf{B}) \mathbf{M} & =(x \mathbf{A}) \mathbf{M}+(y \mathbf{B}) \mathbf{M} \\
& =x(\mathbf{A M})+y(\mathbf{B M}) \\
& =x(\mathbf{M A})+y(\mathbf{M B}) \\
& =\mathbf{M}(x \mathbf{A})+\mathbf{M}(y \mathbf{B}) \\
& =\mathbf{M}(x \mathbf{A}+y \mathbf{B})
\end{aligned}
$$

This shows that

$$
\begin{array}{rlrl}
& & x \mathbf{A}+y \mathbf{B} & \in \mathbf{W} \\
\text { i. e., } & \mathbf{A}, \mathbf{B} & \in \mathbf{W} \\
\text { and } & x, y & \in F \\
\Rightarrow & x \mathbf{A}+y \mathbf{B} & \in \mathbf{W}
\end{array}
$$

Hence, \mathbf{W} is a subspace of $\mathbf{V}(F)$.

