UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

HIGHER ORDER DIFFERENTIAL EQUATION
(i) Definition

The general form of linear equation is
$\frac{d^{n} y}{d x^{n}}+P_{1} \frac{d^{n-1} y}{d x^{n-1}}+P_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+P_{n} y=Q$,
where Q and $P_{1}, P_{2}, P_{3}, \ldots \ldots . ., P_{n}$ are all constants or functions of x
If $P_{1}, P_{2}, P_{3}, \ldots \ldots, P_{n}$ are all constants (Q may not be constant), then the equation is said to be a linear differential equation with constant coefficients.

Note. The general solution of (i) is $y=$ C.F. + P.I. where C.F. is complementary function and P.I. is particular Integral.

Let us consider the equation $\frac{d^{n} y}{d x^{n}}+P_{1} \frac{d^{n-1} y}{d x^{n-1}}+P_{2} \frac{d^{n-2} y}{d x^{n^{2}}}+P_{n} y=0$,
where $P_{1}, P_{2}, P_{3}, \ldots, P_{n}$ are all constants. or $\left[D^{n}+P_{1} D^{n-1}+\ldots+P_{n}\right] y=0$
Let $\mathrm{y}=\mathrm{e}^{\mathrm{mx}}$ be a solution of (ii). Then substifuting e^{mx} for y in (ii) we have
$\left(m^{n}+P_{1} m^{n-1}+P_{2} m^{n-2}+\cdots+P_{n}\right) e^{m x}=0$, which is true if
$m^{m}+P_{1} m^{n-1}+\ldots+P_{n}=0$
The equation (iii) is called the auxiliary equation. If the roots of (iii) are $m_{1}, m_{2}, \ldots, m_{n}$ and are all different, then $e^{m_{1} x} \cdot e^{m_{2} x}, e^{m_{3} x}, \ldots \ldots \ldots .$. are all different and linearly independent.

Hence the general solution of (ii) is $y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x}+\ldots+C_{n} e^{m_{n} x}$
Note. Symbol D. The symbols D and D^{n} are generally used for the operators $\frac{d}{d x}$ and $\frac{d^{n}}{d x^{n}}$ respectively.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Thus the equation $4 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-5 y=0$ can be written in symbolic form as $\left(4 D^{2}+3 D-\right.$ 5) $y=0$.

Solved Examples

Ex. 1 Solve $\left(D^{3}+6 D^{2}+11 D+6\right) y=0$.
Sol. Here D stands for $\frac{d}{d x}$ and so the given equation is $\frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}+6 y=0$
Its auxiliary equation is $m^{3}+6 m^{2}+11 m+6=0$ or $\quad(m+1)\left(m^{2}+5 m+6\right)=0$
or $\quad(m+1)(m+2)(m+3)=0$
or
\therefore The required solution is $\mathrm{y}=\mathrm{C}_{1} \mathrm{e}^{-\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-2 x}+\mathrm{C}_{3} \mathrm{e}^{-3 \mathrm{x}}$, where $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are arbitrary constants.
(ii). Auxiliary equation having equal roots

If the auxiliary equation has two equal roots say $m_{1}=m_{2}$, then general solution
$y=\left(C_{1}+C_{2} x\right) e^{m_{1} x}+C_{3} e^{m}$

Ex. 2 Solve $\left(D^{3}-D^{2}-D+1\right) y=0$.
Sol. The auxiliary equation is $m^{3}-m^{2}-m+1=0$
or $m^{2}(m-1)-(m-1)=0$ or $(m-1)\left(m^{2}-1\right)=0 \quad$ or $(m-1)(m-1)(m+1)=0$
or $m=1,1,-1$
\therefore The required solution is $\mathrm{y}=\left(\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\right) \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{3} \mathrm{e}^{-\mathrm{x}}$, where $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$ are arbitrary constants.

(iii). Auxiliary equation having imaginary roots

Let $\alpha+i \beta$ and $\alpha-i \beta$ be a pair of imaginary roots, then the solution

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
corresponding to these roots will be $C_{1} e^{(\alpha+i \beta) x}+C_{2} e^{(\alpha-i \beta) x}=e^{a x}\left[C_{1} e^{i \beta x}+C_{2} e^{-i \beta x}\right]=$
$e^{a x}\left[C_{1}{ }^{\prime} \cos \beta x+C^{\prime}{ }_{2} \sin \beta x\right]$,
where $C^{\prime}{ }_{1}$ and $C^{\prime}{ }_{2}$ are arbitrary constants $=A e^{a x} \cos (\beta x+B)$. Similarly $A e^{a x} \sin (\beta x+B)$
Ex. 3 Solve $\left(\frac{d^{2} y}{d x^{2}}\right)+4 y=0$, given that $\mathrm{y}=2$ and $\left(\frac{d y}{d x}\right)=0$ when $\mathrm{x}=0$.
Sol. The auxiliary equation is $m^{2}+4=0$ or $m= \pm 2 i$.
\therefore The solution of the given equation is $\mathrm{y}=\mathrm{c}_{1} \cos 2 \mathrm{x}$

where c_{1}, c_{2} are arbitrary constants
Also from (i) we get $\frac{d y}{d x}=-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x$
Now given that $\mathrm{y}=2, \frac{\mathrm{dy}}{\mathrm{dx}}=0$ when $\mathrm{x}=0$. From (i) and (ii) we get
$2=c_{1} \cos 0+c_{2} \sin 0$ and $0=-2 c_{1} \sin 0+2 c_{2} \cos 0$ or $2=c_{1}$ and $0=2 c_{2}$
or $\quad c_{1}=2, c_{2}=0$.
From (i) the required solution is $y=2 \cos 2 x$.

COMPLEMENTS

Complements are used in digital computers for simplifying the subtraction operation and for logical manipulation. There are two kinds of complements for any base-r system.
(a) The r's complement
(b) The ($r-1$)'s complement

When the value of the base is substituted, the two receive the name 2's and 1's complement for binary system and 10's \& 9's complement for decimal system.

Website: www.vpmclasses.com FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.

R's COMPLEMENT

Given a positive number N , in base r , with an integer part of n digits, the r 's complement of
N is defined as $\mathrm{r}^{\mathrm{n}}-\mathrm{N}$ for $\mathrm{N} \neq 0$ and 0 for $\mathrm{N}=0$
The following example will explain it more.
The 10 's complement of $(52520)_{10}$ is $10^{5}-52520=47480$
The number of digits in the number is $\mathrm{n}=5$
The 10 's complement of $(0.3267)_{10}$ is $1-0.3267=0.6733$
No integer part, so $10^{n}=10^{0}=1$
The 10 's complement of $(25.639)_{10}$ is $10^{2}-25.639=74.361$
The 2's complement of $(101100)_{2}$ is $\left(2^{6}\right)_{10}-(101100)_{2}=(1000000-101100)_{2}=010100$
The 2's complement of $(0.0110)_{2}$ is $(1-0.0110)_{2}=0.1010$
The 10's complement of a decimal number can be formed by leaving all least significant zeros unchanged, subtracting the first nonzero least significant digit from 10 and then subtracting all other higher significant digits from 9 . The 2's complement can be formed by leaving all least significant zeros and the first nonzero digit unchanged, and then replacing 1 's by 0 's and 0 's by 1 's in all other higher significant digits.

The r'scomplement of a humber exists for any base r (r greater than 0 but not equal to 1) and may be obtained from the definition given above.

THE $(r-1)$'s COMPLEMENT

Given a positive number N in base r with an integer part of n digits and a fraction part of m digits, the $(r-1)$'s complement of N is defined as $r^{n}-r^{-m}-N$. Some numerical examples are as follow:

The 9 's complement of $(52520)_{10}$ is $\left(10^{5}-1-52520\right)=99999-52520=47479$

Website: www.vpmclasses.com FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
No fraction part, so $10^{-m}=10^{0}=1$
The 9's complement of $(0.3267)_{10}$ is $\left(1-10^{-4}-0.3267\right)=0.9999-0.3267=0.6732$
No integer part, so $10^{n}=10^{0}=1$
The 9's complement of $(25.639)_{10}$ is $\left(10^{2}-10^{-3}-25.639\right)=99.999-25.639=74.360$
The 1 's complement of $(101100)_{2}$ is $\left(2^{6}-1\right)-(101100)=(11111-101100)_{2}=0.10011$
The 1 's complement of $(0.0110)_{2}$ is $\left(1-2^{-4}\right)_{10}-(0.0110)_{2}=(0.1111-0.0110)_{2}=0.1001$
The 9's complement of a decimal number is formed simply by subtracting every digit from 9 . The 1's complement of a binary number is even simpler to form- the 1's are changed to 0's and the 0 's to 1 's. Since the $(r-1$)'s complement is very eâsily obtained, it is sometimes convenient to use it when the r's complement is desired. From the definitions and from a comparison of the results obtained inthe examples, it follows that the r's complement can be obtained from the $(r-1)$'s complement after the addition of r^{-m} to the least significant digit. The 2's complement of 10110100 is obtained from the 1 's complement 01001011 by adding 1 to give 01001100.

It is worth mentioning that the complement of the complement restores the number to its original value. The r's complement of N is $r^{n}-N$ and the complement of $\left(r^{n}-N\right)$ is $r^{n}-\left(r^{n}-\right.$ $\mathrm{N})=\mathrm{N}$, and similarly for the 1 s complement.

Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

