UGCNET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614,9001894073 , 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

GENERAL APTITUDE

Q. 1 -Q. 5 carry one mark each.

1. If in the word PROJECTING, all the vowels are first arranged alphabfically and then inll the consonants are arranged alphabetically which letter will be fifth from the
(A) C
(B) N
(C) J
(D) G
2. The trick involved in any attempt to create a/an \qquad of hiredimensions when only two are present is well known.
(A)extra
(B)image
(C) angle
(D)illusion

DIRECTIO'N which beest rates the given sentence and mark its number as the answer.
3. That maik and and life and no one can deny it.
(A) That man 屈aggressive by nature is a hard fact of life which none can deny.
(B) 1 紋man is aggressive by nature is a hard fact of life and no one can deny it.
(C) That man is aggressive by nature is a hard fact of life and not one can deny.
(D) That man is aggressive by nature ishard for anyoneto deny.

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

Directions for question 4：Select the pair that does not express a relationship similar to that expressed by the capitalized pair．

4．READY ：WIT
（A）upright ：carriage
（B）handy ：sake
（C）hearty ：appetite
（D）keen ：intelligence

 followed by two conclusions numbered I and II．You hav氽o take the given even if they seem to be at variance from commonly known facts．敩ead the conclusions and then
 commonly known facts．

Given Answer ：
（A）If only I conclusion follows
（B）If only II conclusion follov＊

（D）If neither Inor II fono

Conclitions
I．A the flutare instruments．
钴领期he harmoniums are flutes．
Q． 6 to Q． 10 carry two marks each．

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
6. Two plots in Bandra were sold for Rs. 1 crore each. The first plot in Pali hill was sold at a gain of 12% and the second one at reclamation was sold at a loss of 12%. Find the total loss or profit percentage?
(A) There is neither a profit nor a loss
(B) Gain of 12%
(C) loss of 1.44%
(D) Gain of 1.44%
 shown in the bar chart.

(A)
(B) 7.7
(C) $6 . \%$
(D) None of these
8. In the following questions two equations numbered I and II are given. You have to solve both the equations and

Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Give answer if
(A)
$x>y$
(B)
$x \geq y$
(C)
$x<y$
(D)
$x \leq y$
I. $\quad 2 x^{2}-9 x+9=0$
II. $y^{2}-11 y+24=0$
9. Which letter replaces the question mark

N	252	R
T	500	Y
Y	400	P
K	132	L
G	182	$?$

(A) P
(B)
(ऐ) , \%
(D) B
10. At a car park there are 100 vehicles, 60 of which are cars, 30 are vans and the remainder are lorries. If every vehicle is equally like to leave, find the probability of lorry leaving first.

Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(A) $3 / 10$
(B) $7 / 10$
(C) $1 / 10$
(D) $9 / 10$

A: ENGINEERING MA THEMA TICS

Q. 1 -Q. 7 carry one mark each.

1. The eigen vectors of areal symmetric matrix corresponding to dif舀rent eigen vala
(A) orthogonal
(B) singular
(C) non - singular
(D) none of these
2. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \sin \frac{1}{\mathrm{x}}$ for $\mathrm{x} \neq 0, \mathrm{f}(0)=0$ theine
(A) $f(x)$ is continuous and diffôintiable at $x=0$
(B) $f(x)$ is continuouskit not diffeskiablot $x=0$
(C) $f(x)$ is neither cont utis nor differentiable at $x=0$
(D) None of these
3. The mikinuminumberif equal length subintervals needed to approximate $\int_{1}^{2} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}$ to an accuracy of at leas $1 / 3 \times 1 \%^{6}$ using the trapezoidal rule is
(A) lay
(B) 1000
(C) 100 e
(D) 100
4. A has one share in a lottery in which there is 1 prize and 2 blanks; B has three shares in a lottery in which there are 3 prizes and 6 blanks; Comparethe probability of A's success to that of B's success.
(A) $7: 16$
(B) $16: 7$
(C) $6: 14$
(D) $14: 6$
 linearly independent solution is
(A) $-\frac{x}{2}+\frac{c_{1}}{2} e^{2 x}+c_{2}$
(B) $\frac{\mathrm{x}}{2}+\mathrm{c}_{1} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{c}_{2}$
(C) $\frac{x}{2}+c_{1} e^{2 x}+c_{2}$
(D) $-\frac{x}{2}+c_{1} e^{-2 x}+c_{2}$

2, 2, $\left(\frac{\pi}{3}-\frac{2}{3}\right)$
(C) $\frac{1}{3} a^{3}\left(\frac{\pi}{2}-\frac{2}{3}\right)$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(D) $\frac{2}{3} a^{3}\left(\frac{\pi}{2}-\frac{1}{3}\right)$
7. Let $I=\oint_{c} \frac{z-3}{z^{2}+2 z+5} d z$
(A) if $\mathrm{c}:|\mathrm{z}|=1, \mathrm{I}=0$
(B) if $\mathrm{c}:|\mathrm{z}|=1, \mathrm{I}=\pi \mathrm{i}$
(C) if $\mathrm{c}:|\mathrm{z}+1+\mathrm{i}|=2, I=\pi(2+\mathrm{i})$
(D) Both $1 \& 3$
8. Evaluate $\int_{0}^{2 \pi} e^{2 x \cos \theta} d \theta$
(A) $\sum_{n=0}^{\infty}\left(\frac{x^{n}}{n!}\right)$
(B) $\sum_{n=0}^{\infty}\left(\frac{x^{n}}{n!}\right)^{2}$
(C) $\sum_{n=0}^{\infty}\left(\frac{x^{n+1}}{n!}\right)^{2}$
(D) $\sum_{n=0}^{\infty} \frac{x^{n+\}^{*}}}{\sqrt[3]{*}+x^{*}}$

$$
\iint_{S}(x^{3} \underbrace{*} y d z+y^{3} d z d x+z^{3} d x d y)
$$

where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
(A) $4 \pi a^{5}$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(B) $2 \pi a^{5}$
(C) $4 \pi a^{3}$
(D) $2 \pi \pi^{3}$
10. Using Runge - Kutta Method to solve

$$
\frac{d y}{d x}=x y
$$

for $\mathrm{x}=1.2$. Initially $\mathrm{x}=1, \mathrm{y}=2($ take $\mathrm{h}=0.2)$
(A) $y(1.2)=2.4634$
(B) $y(1.2)=2.4912$
(C) $y(1.2)=2.4921$
(D) $y(1.2)=2.4921$
11. Find the general solution for

$$
x^{2} y^{\prime}+3 x y^{\prime}-8 y=\ln \text { 敭 } \ln x, x>0
$$

(D) o solut

PARTB: FLUID MECHANICS

Q. 1 -Q. 9 carry one mark each.

Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

1. In Fig.given below oil of absolute viscosity μ fills the small gap of thickness Y. (a) Neglecting fluid stress exerted on the circular underside, obtain an expression for the torque T required to rotate the truncated coneat constant speed ω. (b) What isthe rate of heat generation, in joules per second, if the oil's absolute viscosity is $0.20 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}, \alpha=45^{\circ}, \mathrm{a}=45 \mathrm{~mm}, \mathrm{~b}=60 \mathrm{~mm}, \mathrm{Y}=0.2 \mathrm{mpr}$, ant , the speed of rotation is 90 rpm ?

ξ
(A) $\frac{2 \pi \mu \omega \tan ^{3} \alpha}{4 Y \cos \alpha}\left[(a+b)=a^{2}\right], 23 / 2 \mathrm{~J} / \mathrm{s}$
(B) $\frac{2 \pi \mu \omega \tan ^{2} \alpha}{4 y \cos \alpha}\left[(a+b)^{2}-a^{3}\right], 23.2 \mathrm{~J} / \mathrm{s}$
(C) $\frac{2 \pi \mu \tan { }^{3} \alpha}{4 \mathrm{Y} \cos \alpha c}\left[(a+b)^{4}-a^{4}\right], 32.2 \mathrm{KJ} / \mathrm{s}$
(D) $\frac{\text { 组 } \omega \tan ^{3} \alpha}{4 Y \cos \alpha}\left[(a+b)^{4}-a^{4}\right], 23.2 \mathrm{~J} / \mathrm{s}$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
2. Flow through a converging nozzle can be approximated by a one dimensional velocity distribution u $=u(x)$. For the nozzle shown, assume that the velocity varies linearly from $u=V_{o}$ at the entrance to u $=3 \mathrm{~V}_{o}$ at the exit. Compute the acceleration $\frac{\mathrm{DV}}{\mathrm{Dt}}$ as a function of x .
(A) $\frac{2 V_{0}^{2}}{L}\left(\frac{2 x}{L}\right)$
(B) $\frac{2 V_{0}^{2}}{L}\left(\frac{2 x}{L}+2\right)$
(C) $\frac{2 V_{0}^{2}}{L}\left(\frac{2 x}{L}+1\right)$
(D) zero

3. Find the ceyective acceleration at the middle of a pipe which converges uniformly from 0.4 m diam ter to 0.2 m diameter over 2 m length. The rate of flow is $20 \mathrm{lit} / \mathrm{s}$.
(A) 0.0 蓀 $\mathrm{m} / \mathrm{s}^{2}$
(B) $0.0408 \mathrm{~m} / \mathrm{s}^{2}$
(C) $48 \mathrm{~m} / \mathrm{s}^{2}$
(D) $0.0048 \mathrm{~m} / \mathrm{s}^{2}$
4. Time of emptying liquid from ahemispherical vessel through an orifice at its bottom is:
(A) $\frac{\pi R^{3 / 2}}{15 \mathrm{Cda} \sqrt{2 g}}$
(B) $\frac{2 \pi R^{3 / 2}}{15 C d a \sqrt{2 g}}$
(C) $\frac{7 \pi R^{3 / 2}}{15 \mathrm{Cda} \sqrt{2 g}}$
(D) $\frac{14 \pi R^{3 / 2}}{15 \mathrm{Cda} \sqrt{2 g}}$
5. While using Boundary layer eq餢tions, Bernoulfí equation -
(A) Can be used any wfere.

(C) Can be used niks, ide thê boundary layer.
(D) Casage b多 used eityr inside or out side the boundary layer.
 the hosizontal. T he diameter of the nozzle is 50 mm and the jet of water from the nozzle strikes the ground a horizontal distance of 4 m . The rate of flow of water will be \qquad $\mathrm{m}^{3} / \mathrm{s}$.

Fig．
7．The velocity components in atwo－dimensional flow are

$$
u \quad=y^{3} / 3+2 x-x^{2} y \text { and } v=x y^{2}-2 y \text { 苚 } x^{3} \beta .
$$

Then these components represent a possible case of an irrotational flow in which rotation is
\qquad —．
（A）zero
（B）one
（C）T no
（D）None of these
8．If for at wo－dimension绊帾tential flow，the velocity potential is given by

Determine tiag alu＊of stream function ψ at the point P ．
（A）

（C）$y^{2}+y+x^{2}$
（D）$y^{2}-y-x^{2}$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
9. The strength of a free vortex is $2 \mathrm{~m}^{2} / \mathrm{s}$ and it is placed in a uniform flow of $3 \mathrm{~m} / \mathrm{s}$ in the x direction. Calculate the pressure difference between the main stream and a point at $x=0.5$ and $y=0.5$. The 3 density of the fluid is $997 \mathrm{~kg} / \mathrm{m}$.
(A) -17844 pascal
(B) -11964 pascal
(C) -15454 pascal
(D) -19556 pascal
Q. 10-Q. 22 carry two markseach.
10. Which of the following shows the relationship bet ween f, l and g for tloy simple pendulum .

(A) $(1 B \vec{k})$
(B) (12π) (4)
(ㄴ) $164 \mathrm{H} \pi)(\mathrm{g} / \mathrm{l})$
(D) $(1 / 4 \pi)(\mathrm{g} / \mathrm{l}){ }^{1 / 2}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
11. The resistance to motion ' R ' for a sphere of diameter ' D ' moving at constant velocity ' v ' through a compressible fluid is dependent upon the density ' ρ ' and the bulk modulus ' K '. The resistance is primarily due to the compression of the fluid in front of the sphere, then find out the dimensionless relationship between these quantities is -
(A) $\mathrm{N}_{\mathrm{e}}=$ function $\left(\mathrm{M}_{\mathrm{a}}\right)$.
(B) $\mathrm{N}_{\mathrm{e}}=$ function $\left(2 \mathrm{M}_{\mathrm{a}}\right)$.
(C) $\mathrm{N}_{\mathrm{e}}=$ function $\left(89 \mathrm{M}_{\mathrm{f}}\right)$.
(D) $\mathrm{N}_{\mathrm{e}}=$ function $\left(9 \mathrm{M}_{\mathrm{p}}\right)$.
12. A fluid flows from a large pressurized tank through a 100 rivising, \uparrow, inm diamater tube. In a 600 sec time period, $1300 \mathrm{~cm}^{3}$ of fluid are collected in a nex ixing cup. fist head loss in the tube is 1 m , the kinematic viscosity v is \qquad .

(A) $C=\sqrt{g / 8 f}$
(B) $\mathrm{C}=\sqrt{8 \mathrm{~g} / \mathrm{f}^{1 / 4}}$
(C) $\mathrm{C}=\sqrt{8 \mathrm{~g} / \mathrm{f}}$
(D) $\mathrm{C}=\sqrt{\frac{\mathrm{f}}{\mathrm{f}} \mathrm{zg}}$

(A) 线 $\2
(B) 0.364δ
(C) 36.4δ

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(D)None of these
15. A metal ball of diameter 1.2 ft and weight 99 lb is dropped into the ocean. \qquad fps will be the maximum velocity the ball will achieve if, for seawater, $\rho=2.0$ slugs $/ \mathrm{ft}^{3}$ and $\mu=3.3 \times 10^{-5} \mathrm{lb}-\mathrm{s} / \mathrm{ft}^{2}$.
16. A horizontal venturimeter with inlet and throat diameters 30 cm and 15 cm resectively is used to
 is 20 mm of mercury. The rate of flow will be \qquad lit/s. Take $\mathrm{C}_{\mathrm{d}}=0.98$

Common DataQuestions

Common Data For Ques 17 and 18

A smooth pipeof diameter 80 mm and 800 m long carries, kinematic viscosity of water as 0.015 stokes. Take.the value of co-elicient of friction ' f ' from the relation given as

$$
f=\frac{.0791}{\left(R_{e}\right)^{1 / 4}} \text {, where } \mathrm{R}_{\mathrm{e}}-\mathrm{Re}_{\mathrm{e}} \text { ynolds }
$$

17. Calculate the loss of head.
(A) 234.2 m
(B) 0.2342 m
(C) 23.42 cm
(D) 23 㐱 2 m
18. Calaulate thathickness of laminar sub-layer.
(A) 2.774 cm
(B) 0.028 .74 cm
(C) 0.02274 m
(D) 0.02274 cm

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Onli ne St udent Portal: examprep.vpmda sses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Common Data For Ques 19 and 20

Experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} / \mathrm{h}$. on a flat plate of size 2 m long and 1 m wide. Theplate is kept at such an angle that the co-efficient of lift and drag are 0.75 and 0.15 respectively.

Take $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
Given: $A=2 \mathrm{~m}^{2} ; \mathrm{C}_{\mathrm{L}}=0.75 ; \mathrm{C}_{\mathrm{D}}=0.15 ; \rho=1.2 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{U}=13.89 \mathrm{~m} / \mathrm{s}$
19. The Resultant force will be \qquad N
20. The Power required to maintain the flow will be \qquad kW

Linked Ans wer Questions

Statement for LinkedAnswer Questions 21 and
A uniform flow of $12 \mathrm{~m} / \mathrm{s}$ is flowing over a doublet o okstrength $18 \mathrm{~m}^{2} / \mathrm{s}$. The doublet is in the line of the uniform flow.
21. Determine the shape of the Ran\%ine oval.
(A) Hyperbola
(B) ellipse
(C) Parabola
(D) circlesp
22. What wistsefine radiuşof the Rankine circle?
多
(A) 587 m ,

(C) 0.458 m ,
(D) 0.677 m ,

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Onli ne St udent Portal: examprep.vpmda sses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

PART-C (MATERIAL SCIENCE)

Q. 1-Q. 9 carry one mark each.

1. Copper has fcc structure and its atomic radius is $1.273 \AA$, the bond length and the density of copper is (atomic weight of copper $=63.5$ and Avogadro number $=6.02 \times 10^{23}$ molecules pir gm mole)
(A) $5.7 \AA, 6.082 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
(B) $3.6 \AA$ ®, $6.082 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
(C) $3.6 \AA, 9.043 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
(D) $5.7 \AA, 9.043 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
2. The radius of sodium ions and chlorine ions in sodizan chloride is 0.098 nm and 0.181 nm . Determine the packing factor for sodium dloride.
(A) 0.555
(B) 0.662
(C) 0.465
(D) 0.789
3. Copper having FCC wivksatic radius $0 \cdot 128 \mathrm{~nm}$. Findthe spacing with (1111) planes.
(A) 0.362 nrif
(B) 0.548 nuis
(C) 0.209 谵楊
(D) 0.352 nm
4. Maxisetand Kelvin-Voigt models areto be setup to simulate the creep behaviour of a plastic. The elastic and viscous constants for the Kelvin-Voigt models are $2.2 \mathrm{GN} / \mathrm{m}^{2}$ and $110 \mathrm{GN} \mathrm{s} / \mathrm{m}^{2}$ respectively and the viscous constant for the Maxwell model is $200 \mathrm{GN} \mathrm{s} / \mathrm{m}^{2}$. Estimate a suitable

Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．
value for the elastic constant for the Maxwell model if both models are to predict the same creep strain after 50 sec ．
（A） $28.53 \mathrm{G} \mathrm{N} / \mathrm{m}^{2}$
（B） $27.98 \mathrm{G} \mathrm{N} / \mathrm{m}^{2}$
（C） $26.79 \mathrm{G} \mathrm{N} / \mathrm{m}^{2}$
（D） $25.66 \mathrm{G} \mathrm{N} / \mathrm{m}^{2}$

（A） $0 \cdot 1455 \% \mathrm{C}$
（B） $0.0052 \% \mathrm{C}$
（C） $0.0507 \% \mathrm{C}$
（D） $0.0985 \% \mathrm{C}$
6．What is the maximum tempera永e to whicha brass rod may be heated from $20^{\circ} \mathrm{C}$ ，without exceding
 thermal expansion is 20 全栓 ${ }^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$ at $20^{\circ} \mathrm{C}$ ．
（A） $96^{\circ} \mathrm{C}$
（B）

（C）
$)^{3} 54^{\circ} \mathrm{C}$
（ 3 ） $233^{\circ} \mathrm{C}$

Toll Free：1800－2000－092
Mobile：9001297111，9829619614， 90018940 73， 9829567114
Website：www．vpmdasses．com
FREE Online Student Portal：examprep．vpmdasses．com
E－Mail：vpmclasses＠yahoo．com／info＠vpmclasses．com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
7. A reaction bonded silicon nitride ceramic has a strength of 300 MPa and a fracture toughness of 3.6 $\operatorname{MPa} \sqrt{\mathrm{m}}$. What is the largest-size internal crack that this material can support without fracturing? Use $Y=1$ in the fracture toughness equation.
(A) $65.4 \mu \mathrm{~m}$
(B) $91.6 \mu \mathrm{~m}$
(C) $43.7 \mu \mathrm{~m}$
(D) $87.5 \mu \mathrm{~m}$
8. If a copper wire of commercial purity is to conduct 12 A g\% cuncent with a mikimum voltage drop of $0.6 \mathrm{~V} / \mathrm{m}$, what must be its minimum diameter ?

Assume, electrical conductivity of material ' σ ' is 5 '徐金 $10^{7}(\Omega)^{-1}$
(A) $6.013 \times 10^{-4} \mathrm{~m}$
(B) $7.541 \times 10^{-4} \mathrm{~m}$
(C) $8.310 \times 10^{-4} \mathrm{~m}$
(D) $9.605 \times 10^{-4} \mathrm{~m}$

(B) $4201 \mathrm{~kg} / \mathrm{m}^{3}$
(C) $3610 \mathrm{~kg} / \mathrm{m}^{3}$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(D) $2235 \mathrm{~kg} / \mathrm{m}^{3}$
Q. 10-Q. 22 carry twom arks each.
10. Match the following and choose the correct combination

Group1

Characteristics
P. Atomic configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
Q. Strongly electropositive
R. Strongly electronegative
S. Covalent bonding
(A) P-1, Q-2, R-3, S-4
(B) P-3, Q-2, R-4, S-1
(C) P-3, Q-1, R-4, S-2
(D) P-3, Q-4, R-1, S-2
11. The atomic percentagevan of Cu to Au in an intermetallic compound which consists of $49.2 \mathrm{wt} \% \mathrm{Cu}$ and $50.8 \mathrm{wt} \%$ \% $\%$ is
 $(\mathrm{Cu}=64, \mathrm{Au}=197)$.
12. A samafe dos is ass ans a cack of half length $2 \mu \mathrm{~m}$. The Young's modulus of the glass is $70 \mathrm{GN} / \mathrm{m}^{2}$ arkspecin \%
(A) 95.
(B) \% $\% \mathrm{MPa}$
(C) 632 MPa
(D) 576 MPa

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Websit e: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
13. A sign board weighing 4 kN is supported by a two bartruss ACB as shown in Fig. The truss consists of two bars AC and BC pinned to each other at C and supported by pins at A and B . The sectional area required for the bar AC and the diameter of the p in at the support B will be \qquad . Allow a safe tensile stress of $125 \mathrm{~N} / \mathrm{mm}^{2}$ and a safe shear stress of $50 \mathrm{~N} / \mathrm{mm}^{2}$.
14. The percentage volume change that occurs when iron changes from a body centerefubiadyay ture to a face centered cubic structure is \qquad -.
15. The packing efficiency and the density of diamond will be \qquad䔆d \qquad $\mathrm{kg} / \mathrm{m}^{3}$, respectively. The mass of carbon atom is 12 amu and lattice siz is 0.357 nm . Wi \%iamond having cubic unit cell.
 increase the carbon content to $0.40 \mathrm{wt} \% 0.50 \mathrm{~mm}$ surface \qquad hrs. Assume that the carbon content at the surface is $0.90 \mathrm{wt} \%$ and that tivikel has a nominal carbon content of 0.20 wt \%. Given : Diffusivity of C in $\mathrm{Fe}(\mathrm{g})$ at $927^{\circ} \mathrm{C}$, $\mathrm{D}=1.28^{\circ} \times 10^{-11} \mathrm{~m}^{2} / \mathrm{s}$, if $\operatorname{erf}(\mathrm{z})=0.7143, \mathrm{z}=$ 0.755 .

Common DataQuestions

Common Data For Ques 17 arid/ 18

A certain orthorhombivestal has axial units a: b:c $0.424: 1: 0.367$.
17. The Miller indizes of aryals $0.212: 1: 0.183$ is \qquad .
 \qquad .

Coinmointaita For Ques 19 and 20
A un 大irectionskíber-epoxy composite contains 65% by volume fibers and 35% epoxy resin.
19. Tho kht percentages of fiber and epoxy resin in composite material is \qquad $\%$ and \qquad $\%$ respectively.
20. If Young's modulus of the fiber is 400 GPa and that of epoxy resin matrix is 50 GPa , the Young's modulus of the composite is \qquad GPa.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614 , 9001894073 , 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Linked Ans wer Questions

Statement for Linked Ans we rQuestions 21 and 22:
Glass fibers (diameter $=20 \mathrm{~mm}$) provide longitudinal reinforcement for nylon subjected to tensile loadings. Young's modulus of glass fiber and ny lon are $70,000 \mathrm{MPa}$ and 2800 MP 㑓respectively.
 be \qquad N.
22. If the average stress in the composite is 14 MPa . Thenthe amount \qquad MPa.

PARTD: SOLID MECHANICS

Q. 1-Q. 9 carry one mark each.

 and two 250 N horizontal forces. Replacing these fores witha SINGLE force at C (C is called the shear center), the value of x will be \qquad .

2. $\langle\hat{*}$ Each nember $\%$ the truss will safely support atensile force of 4 kN and a compressive force of 1 kN . The faxdst mass m that can safely be suspended is \qquad -.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

3. The coefficient of static and kinetic friction between a body and the surface are .75 and . 50

\qquad times g.
4. A particle moves with uniform accelera**会 along ativight line ABC. The speed of the particle at
 the ratio of timetaken by the pisiticle to trayel distances $A B$ and $B C$ is \qquad _.
5. A $2.0-\mathrm{kg}$ box is attacked by a stivis, The two boxes are inibustat rest on a friction-free track. The string is cut and the spring applies an impulse to bothaoxes, sedtirk them in motion. The 2.0 kg box is propelled backwards and moves 1.2 meterstof end
 \qquad s.
6. A bsy of cisklar cross-sectionvaries uniform by from a cross-section 2D to D if extension of the bar is calculatedtrifing it as a bar of average diameter, then the percentage cross will be \qquad $\%$.
7. All the ailure theories give nearly the same result-
(A) When one of the principal stresses at a point is large in comparison to the other.
(B) When shear stress act

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(C) When both the principal stresses are numerically equal.
(D) For all situation of stress
8. A cylindrical bar of 20 mm diameter and 1 m length is subjectedto a tensile test Its longitudinal strain in 4 times that of its lateral strain. If the modulus of elasticity is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, hen \mathbf{t} modulus of rigidity will be-
(A) $8 \times 10^{6} \mathrm{~N} / \mathrm{mm}^{2}$
(B) $8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
(C) $0.8 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$
(D) $0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
9. A mass of 1 kg in suspended by means of 3 spring as sime figure the spring constants K_{1}, K_{2} and K_{3} are $1 \mathrm{kN} / \mathrm{m}, 3 \mathrm{kN} / \mathrm{m}$ and $2 \mathrm{kN} / \mathrm{m}$ respectively. The natural frequency of the system in approximately given as

Q. 10 - Q. 2 carry two marks each.

10 . Show in Fig. 济 a statically determinate simple truss, loaded by concentrated loads at pins D and B. Whatakthe total deflection of pin C asa result of these loads?

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Figure. Simple plane truss.
(A) $\Delta_{\mathrm{C}}=\frac{1}{\mathrm{AE}}(-20 \mathrm{i}-106.6 \mathrm{j}) \mathrm{ft}$
(B) $\Delta_{\mathrm{C}}=(-20 \mathrm{i}-106.6 \mathrm{j}) \mathrm{ft}$
(C) $\Delta_{\mathrm{C}}=\frac{1}{\mathrm{AE}}(-20 \mathrm{i}) \mathrm{ft}$
(D) $\Delta_{\mathrm{C}}=\frac{1}{\mathrm{AE}}(-106.6 \mathrm{j})$
11. A point in a two-dime shal state of strain is subjectedto pure shearing strain of magnitude γ_{xy}
 \qquad times $\gamma_{x y}$.
12. The nêimu defle ion of the pin-connected beams shown in Fig will be \qquad m . The weight of the beam lis been included in the $180 \mathrm{~N} / \mathrm{m}$ uniform loading. T ake $\mathrm{E}=2 \times 10^{11} \mathrm{~Pa}$.

Figure．Pin－connected beams．
13．A $\mathrm{W} 300 \times 0.77$ wide－flange steel beam acts as a cantilever，subjet to the lơ絃shon below．The maximum bending stress in the beam will be \qquad
 is along the centroidal axis．）

14．A circular shaft can transmit torque of 5 kNm ．If the torque is reduced to 4 kNm ．Then the maximum value of befising momen and an be applied to the shaft is \qquad kNm ．

15．A torsion member is forisk ted from two concentric thin tubes．At the ends，the tubes are wel ded
 of the iafer abe ists，then he shear stress in the inner tube will be \qquad τ.

16．A pring vis 25 active coils cannot be accommodated within a given space，hence 5 coils of the spriikg are cùishe stiffness of the new spring will be \qquad times the original spring．

C絃前n DataQuestions

Common Data For Ques 17 and 18

The sliders A and B are connected by a light rigid bar and move with negligible friction in the slots， both of which lie in a horizontal plane．

Toll Free：1800－2000－092
Mobile：9001297111，9829619614， 9001894073 ， 9829567114
Website：www．vpmdasses．com
FREE Online St udent Portal：examprep．vpmdasses．com
E－Mail：vpmclasses＠yahoo．com／info＠vpmclasses．com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

For the position shown, the velocity of A is $0.4 \mathrm{~m} / \mathrm{s}$ to the right.

(A) $\mathrm{T}=24.1 \mathrm{~N}$
(B) $\mathrm{T}=25.7 \mathrm{~N}$
(C) $\mathrm{T}=25.0 \mathrm{~N}$
(D) T**19.8

The contilever beam hown in Fig., supports a uniform loading $\mathrm{w}_{0} 10 \mathrm{kN} / \mathrm{m}$ and a concentrated couple-inoment M_{0} having the value of $100 \mathrm{kN}-\mathrm{m}$. The beam is 10 m long.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Figure. Cantilever beam.
19. Find the supporting forces
(A) $\mathrm{R}_{1}=26.3 \mathrm{kN}, \mathrm{R}_{2}=73.7 \mathrm{kN}$
(B) $\mathrm{R}_{1}=45.3 \mathrm{kN}, \mathrm{R}_{2}=13.87 \mathrm{kN}$
(C) $\mathrm{R}_{1}=15.3 \mathrm{kN}, \mathrm{R}_{2}=10.87 \mathrm{kN}$
(D) $\mathrm{R}_{1}=18.45 \mathrm{kN}, \mathrm{R}_{2}=16.44 \mathrm{kN}$
20. What will be the deflection curveifitisms on \%
(A)

$$
\mathrm{V}=\frac{1}{\mathrm{El}}\left(\mathrm{R}_{1} \frac{\mathrm{x}^{3}}{2_{\text {珢 }}} \frac{10 \mathrm{x}}{4} 100 \frac{\mathrm{x}^{2}}{\%}+\mathrm{C}_{3} \mathrm{x}+\mathrm{C}_{4}\right)
$$

(D) $v=\frac{1}{E l}\left(R_{1} \frac{x^{3}}{24}-\frac{10 x^{4}}{45}+100 \frac{x^{2}}{13}+C_{3} x+C_{4}\right)$

Linked Ans wer Questions

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Statement for Linked Ans we rQuestions 21 and 22:

A $100-\mathrm{lb}$ vertical force is applied to the end of a lever which is attachedto a shaft at O .

21. Determine moment about O.
(A) $1200 \mathrm{k} \mathrm{lb}_{\text {in }}$
(B) $-1200 \mathrm{k} \mathrm{lb}_{\text {in }}$
(C) $-1200 \mathrm{klb}_{\text {in }}$
(D) $1200 \mathrm{k} \mathrm{lb}_{\text {in }}$
22. The horizontal force at ${ }^{2}$ hich createsthe same moment will be,
(A) -57.7 lb
(B) 57 解 1 b
(C) 57.7 ๆ,
(D) $5 \% \mathrm{lb}$

E: THERMO DYNAMICS

Q. 1-Q. 9 carry one mark each.

Toll Free: 1800-2000-092
Mobile: 9001297111, $9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

1. Calculate the work done when 50 g of iron reads with hydrochloric acid in (i) a closed vessel offixed volume (ii) an open beaker at $25^{\circ} \mathrm{C}$.
(A) $0,2122.22 \mathrm{~J}$
(B) $0,-2212.22 \mathrm{~J}$
(C) 0,0
(D) $21.2,-2122.22 \mathrm{~J}$.
2. The $\mathrm{P}-\mathrm{V}$ diagram for a cyclic process is a triangle ABC drawn in rder. The coundipates of $\mathrm{A}, \mathrm{B}, \mathrm{C}$
 in litre. Calculate work done in the complete cycle.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
3. A gas is contained in acylinder with a moveable piston on which a heavy block is placed. Suppose the region outside the damber is evacuated andthe total mass of the block and the movable piston is 102 kg . When 2140 J of heat flows into the gas, the internal energy of the gas increases by 1580 J . What is the distance sthrough which the piston rises?
(A) .54 m
(B) .45 m
(C) .74 m
(D) .47 m
4. If heat is added to a system andthe temperature of a syser/increases, without/̌knowing anything else, which form of energy will definitely increase?
(A) The kineticenergy of the system
(B) The potential energy of the system
(C) The work done by the system
(D) The internal energy (i.e., th molecular entexy form the system
5. An incompressible liquid flows 离ough the shown in the figure. The velocity at location 2 is
(A) $\frac{1}{4} \vec{V}$
(B)

(C) \vec{V}_{1}
(D) 4膟

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

6．For a particular power plant，the heat added and rejected both occur at constant ten erature no other processes experience any heat transfer．The heat is added in the amount of 3.50 kJ at $440^{\circ} \mathrm{C}$ an会 is

（A） 59.8%
（B） 55.4%
（C） 58.9%
（D） 54.5%
 an exhaust pressure of 0.08 bar．Aftasentropic expasion of steam in the turbine，the moisture content at the turbine exhaust is at the turbine inlet，and calcul徽e the Ranking 部le efficiency for these steam conditions．Estimate also the mean temperature of hè亚gddition．
（A） 15.377 bar， 33%, 㐫 $\sum_{1 / 2}{ }^{\circ} \mathrm{C}$
（B）

（D） 6.832 6． $31.68 \%, 187.51^{\circ} \mathrm{C}$
8．automobile gasoline engines have efficiencies of about 25% ．About \qquad percentage of the heat of combustion is not used for work but released as heat．

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
9. A gas-t urbine power plant operating on an ideal Brayton cycle has a pressure ratio of 8. The gas temperat ure is 300 K at the compressor inlet and 1300 K at the turbine inlet. Utilizing the air-standard assumptions, determine the gastemperature at the exitsof the compressor and the turbine.
(A) $550 \mathrm{~K}, 775 \mathrm{~K}$
(B) $545 \mathrm{~K}, 772 \mathrm{~K}$
(C) $540 \mathrm{~K}, 770 \mathrm{~K}$
(D) $548 \mathrm{~K}, 771 \mathrm{~K}$
Q. 10-Q. 22 carry two marks each.
10. Calculate the standard internal energy change for the react站n.

$$
\mathrm{OF}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \longrightarrow \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{HF}_{(\mathrm{g})}
$$

at 298 K . The standard enthalpies of formation of $\mathrm{OF} \stackrel{y}{4}, \mathrm{H}_{2} \psi_{(\mathrm{g})}, \mathrm{HF}_{(\mathrm{g})}$ are $+20,+250$ and -270 kJ mol^{-1}.
(A) 312.4775 kJ
(B) 215.4387 kJ
(C) -115.376 kJ
(D) -312.4775 kJ
 bar. The \& xuanenty hasi. value 1.15. Find the finalheat transferred per kg of fluid if (A) the fluid is air, (\$3) the 変uid isteam.

(B) 4.46 .45 kJ
(8) 14.37 kJ

12. A reservoir at 300 K absorbs 500 J of heat from a second reservoir at 400 K . Then \qquad (J) amount of work is lost during the process.
13. The total work done by a gas system following an expansion process as shown in Figure.

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

（A） 2.152 MJ
（B） 2.251 MJ
（C） 2.132 MJ
（D） 0.251 MJ
14． 1 g of water at 373 K is converted into seam at the
 540 cal． g^{-1} will be \qquad J．（Given ${ }^{\boldsymbol{k}}$（andard atmos heric pressure is $1.013 \times 10^{5} \mathrm{Nm}^{-2}$ ．）
 mass of air in the tire if the ten为erature is $20^{\circ}{ }^{\circ}$ 参 d the increase in gauge pressure if the temperature in the tire reaches $50^{\circ} \mathrm{C}$ are \qquad kg and kPa ．（Assume that at mospheric pressure is 100 kPa ．）

16．A cylinder containing统期gram molecule of the gas was compressed adiabatically be \qquad cal．

Coninu，Dakial

Contmon Dasa For Ques 17 and 18

4．\＆pands against a constant external pressure and does 25 kJ of expansion work on the surroundongs．During the process， 60 kJ of heat is absorbed by the system．

17．The values of $\Delta \mathrm{H}$ will be \qquad kJ．

18．The value of $\Delta \mathrm{U}$ will be \qquad kJ．

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Common Data For Ques 19 and 20

T wo kilogramsof water at $25^{\circ} \mathrm{C}$ are placed in a pist on cylinder device under 100 kPa pressure as shown in the diagram (State (A)). Heat is added to the water at constant pressure until the piston reaches the stops at a total volume of 0.4 m 3 (State (B)). More heat is then added at coikt ant volume until the temperature of the water reaches $300^{\circ} \mathrm{C}(\operatorname{State}(\mathrm{C}))$.
19. The quality and mass of the vapor at state (B) will be \qquad and \qquad kg , espectively.
20. The pressure of the fluid at state (C) will be \qquad MPa.

Linked Ans wer Questions

Statement for LinkedAnswer \mathbf{Q} (f) tions \% 1 and 22:
A mass of 0.25 kg of a didg gas has a pressure of 300 kPa , a temperat ure of $80^{0} \mathrm{C}$, and a volume of $0.07 \mathrm{~m}^{3}$.

 \qquad kJkg K.
 \qquad $\mathrm{kJ} / \mathrm{kg} \mathrm{K}$.

F: PO LYMER SCIENC EAND ENGINEERING

Q. 1 -Q. 9 carry one mark each.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

1. Which of the following agent is used as die hardener?
(A) Cyanoacrylate
(B) Nail polish
(C) Volatile relief agents
(D) Compositeresin
2. Ormoœrs are:
(A) Organically modified composites
(B) Inorganically modified composites
(C) Organically modified glass ionomer cement
(D) Inorganically modified glass ionomer cement
3. All the following are materials used forfabrication of axilloficial proshesis except :
(A) Vinyl chobride polymers
(B) Acrylic resins
(C) Silicone rubber
(D) Fiber reinforced \& mposite.

(A) 3 to 5 参为
(B) 8 to * *
(C) 02 to $0.5 *$
(1) \% 0.8%
4. Liquid used in polycarboxylate cement is:
(A) Polycry acid

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．
（B）Phosphoric acid
（C）Eugenol
（D）Methacrylic acid
6．In freeradical polymerization，one of the following techniques permits simult aneos increase in rate of polymerization and polymer molecular weight．
（A）Solution polymerization．
（B）Suspension polymerization．
（C）Bulk polymerization
（D）Emulsion polymerization／

7．A reinforced polymer composite is made by the inçmporation of
（A）elastomers into the polymer．
（B）fibers into the polymer．
（C）plastocizers into the polymer．
（D）gaseous additives into the 1 全ymer．

\qquad percent．
（A）1－1000
（B） 20 94－250
（C）1000－家组0
（D）1500－2000
9．Due 展絞 excellent permeability to air／gas and oxidation resistance，the tubes of automobile tyres is made of
（A）butyl rubber

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．
（B）Buna S
（C）cold SBR
（D）Bunai N

Q．10－Q． 22 carry two marks each．
10．If a type of polyethylene has an average degree of polymerization of 10,000 若hat is its averag多 molecular weight？
（A） $280,000 \mathrm{~g} / \mathrm{mol}$
（B） $240,600 \mathrm{~g} / \mathrm{mol}$
（C） $270,000 \mathrm{~g} / \mathrm{mol}$
（D） $340,050 \mathrm{~g} / \mathrm{mol}$
11．A nylon 6,6 has an average molecular weight of 12,00 gind ealiculatethe average degree of polymerization（see Sec． 10.7 for its mestructure M．W $=226 \mathrm{~g} / \mathrm{mol}$ ）．
（A） 36 mers
（B） 45 mers
（C） 53 mers
（D） 68 mers
12．Fillers such askiknoxie ais carbon black are added to the crude natural rubber before vulcanisatio，in of to tmprove its
（ A 会 elastisit
（B）pasasticity
（C）stay gth
（D）weathering characteristics
13．Which of the following polymers is used for making a non stick coating on frying pans？

Mobile： $9001297111,9829619614,9001894073,9829567114$
Websit e：www．vpmdasses．com
FREE Online St udent Portal：examprep．vpmdasses．com
E－Mail：vpmclasses＠yahoo．com／info＠vpmclasses．com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(A) Bakelite
(B) Teflon
(C) Perspex
(D) P VC
14. Addition of plasticisersto polymers results in partial neutralisation of interm月fecular torces of attraction bet ween the macro-molecules thereby increasing its
(A) tensile strength
(B) chemical resistance
(C) flexibility
(D) all(a), (b) \& (c)
15. Which one among the following is a thermosetting plastif. [14. MT 1993, 95]
(A) P VC
(B) Bakelite
(C) PVA
(D) Perspex
16. Bakelites are
(A) Rubber
(B) R\&sins
(C) Rayon
(D) P (asticiser ${ }^{3} 30$.

Common DataQuestions
Common Data For Ques 17 and 18

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Consider these data:

Year	U.S. Population (millions)	Plastics Produced in the United States (billions of pounds)
1997	269	89
2003	290	107

17. How many pounds of plastic were produced perperson in 2003 ?
(A) $257 \mathrm{lb} /$ person
(B) $370 \mathrm{lb} /$ person
(C) $462 \mathrm{lb} /$ person
(D) $598 \mathrm{lb} /$ person
18. Bet ween 1997 and 2003, what is the percent change n th *) person?
(A) 10%
(B) 8%
(C) 12%
(D) 14%

Linked今Ansiger Questions

C $\%$ sider

$$
\left.1000 \mathrm{CH}_{2}=\mathrm{CH}_{2} \xrightarrow{\mathrm{R} \cdot}+\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{1000}
$$

19. Calculate the energy change during this reaction.
(A) $1.14 \times 10^{5} \mathrm{~kJ}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
(B) $2.33 \times 10^{5} \mathrm{~kJ}$
(C) $3.78 \times 10^{5} \mathrm{~kJ}$
(D) $4.23 \times 10^{5} \mathrm{~kJ}$
20. To carry out this reaction, heat must be supplied or removed from the polymerizati辚n vessel? Explain.
(A) supplied tothe polymerization vessel
(B) removed from the polymerization vessel
(C) intially supplied and the removed from the polymerization ve sel
(D) None of the above

Statement for Linked Ans we rQuestions 21 and 22:
A tensile test is performed to determine the paramel exponent m for a certain metal. The temperature at wichzthe is performed $=500^{\circ} \mathrm{C}$. At a strain rate $=12 / \mathrm{s}$, the stress is measured at 160 MPa ; and at a rain rate $=250 / \mathrm{s}$, the stress $=300 \mathrm{MPa}$.
21. Determine the value of m.
(A) 0.4
(B) 0.2
(C) 0.5
(D) 0.3
22. Deter; ine the alue C .
(A) 95.7
(B) 904
(C) 88.8 .
(D) 81.23

G: FOOD TECHNO LO GY

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614 , 9001894073 , 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
Q. 1 -Q. 9 carry one mark each.

1. Pasteurization is a
(A) lowtemperat ure treat ment
(B) steaming treat ment
(C) high temperat ure treatment
(D) low and high temperature treat ment
2. Clostridium perfingens poison is an
(A) exotoxin
(B) enterotoxin produced during sporulation
(C) endotoxin
(D) enterotoxin produced during vegetative phase
3. Which of the following is NOT an intinis factor in foo spoilage?
(A) pH
(B) Moisture content
(C) Available nutrien
(D) Temperature

(A) Strickura) ramewofk
(B) Storage
(\%) 絧商 (A) and (B)
(D) None of these
4. In polysaccharides, monosaccharaides are joined by

Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(A) peptide bond
(B) glucose bond
(C) glycosidic bond
(D) covalent bond
6. Which of the following are the combinations of symptoms of diverticular disease?
(1) abdominal cramps
(2) severe constipation
(3) rapid weight loss
(A) (1) and (2) only
(B) (1) and (3) only
(C) (2) and (3) only
(D) (1), (2) and (3)

(A) boiling milk and flour to mese custard
(B) beating egg-whit ${ }^{\circ}$ 紋 make meringue

(D) toastindy

The can

(19) 辣ten a food product.
(B) assist some foods to retain moisture.
(C) assist in binding ingredients in a cake.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(D) contributeto the aeration of food products.
9. Developing criteria for evaluation is a sage in the design process in Food and Technology.

It involves
(A) creating a set of questions to ask the client.
(B) making a list of food itemsto be produced.
(C) identifying key processes that will be used in producing food items.
(D) creating a set of questions that focus on the specifications foum within the dergagrief
Q. 10 -Q. 22 carry tho mark each.

(A) approving all food safety auditors
(B) in specting all food premises annually
(C) issuing permits for community maik \%
(D) developing and updating th/FFood Standara Ca/de
11. Bacteriathat cause food spoila等
(A) are a type of enzy
(B) areonly present in chicken

(D) need, mbist, dampenvironment in which to grow.
12. 'Revarse osmesisisis a form of membranetechnology that is used to
(Aksoôk pasteurize food.
(B) produce some fruit juices.
(C) change the characteristics of some plant foods.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc
(D) improve the characteristics of some baked products.
13. Plant sterols are
(A) a functional ingredient.
(B) classified as a probiotic substance.
(C) import ant in improving the health of the eyes.
(D) able to stimulate the growth of bacteria in the intestine.
14. When making jam, to test whether a gel has formed it is import anto
(A) stir the jam well with a fork.
(B) make sure that a skin doesnot form on the jam sample
(C) place a saucer in the freezer before beginning tivisut
(D) ensure that a saucer is at room temperat ure beforesginnipg the test.
15. Which of the following packages is an example of asept packaging?
(A) Tetra Pak drinking boxes
(B) paper bag
(C) milk carton
(D) plastic bread bag

(A) coliond ansinge is measured
(B) Ins of waverentrent loss of water
(\%)
(D) change in light absorbance is measured

Common DataQuestions

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Common Data For Ques 17 and 18

A multienzyme complex has three different catalytic activities with eight stes for each activity. Compare the frequencies of defective complexes produced in the following two situations:
17. Determine the frequency of defective complexes when the complex is synthesizedin one step as one long polypeptide chain containing 8,000 amino acid residues.
(A) 8×10^{-2}
(B) 7×10^{-2}
(C) 6×10^{-2}
(D) 5×10^{-2}
(D) 5×10^{-2}
18. Determine the frequency of defective complexes, when the comple ${ }^{2}$ is constructed in three steps. First, 24 polypeptides are synthesized: $8 \times 200,8 * \leqslant$ and 8×500 amino acid residues. Next, trimers consisting of one of each chain type are formed. Lask, these eight trimers are assembled to form the complex. (Assume in both cathat the error sequency is 10^{-5} for ead operation and that a

(A) 8×10^{-2}
(B) 7×10^{-2}
(C) 6×10^{-2}
(D) $5 \times 10^{-}$

Given the pegtide

> Ala-Ser-Thr-Lys-Gly-Arg-Ser-Gly
19. What peptides would be released from the given peptide by treatment with trypsin?
(A) Ala-Ser-Thr-Lys
(B) Gly-Lys

Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
(C) Ser-Thr
(D) Ser-Thr-Lys
20. If each of the products were treated with fluoro-2, 4-dinitrobenzene (FDNB) and subjected to acid hydrolysis, what DNP-amino acids could be isolated?
(A) DNP-Ala
(B) DNP-Gly
(C) DNP-Ser
(D) All of these

Linked Ans wer Questions

Statement for Linked Answe rQuestions 21 and
 equilibrium constant in the $\mathrm{molL}^{-1} \mathrm{scal}$, $\mathrm{s} ~ 10^{6}$.
21. Calculate the percentage by weightodimer when thet al concentration of the protein is $1 \mathrm{~g} \mathrm{~L}^{-1}$.
(A) 87.0
(B) 13.5
(C) 4.4
(D) 95.6

(A) 87.0
(B) 13 方
(C) 4.4
(D) 95.6

ANSWER KEY

GENERAL APTITUDE

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathbf{6}$	7	8	9	10
Answer	D	D	A	B	B	C	B	D	C	C

A: ENGIN EERING MA THEMA TICS

Question	1	2	3	4	5	6	7	8	9	10	11
Answer	A	A	A	A	A	**	D	B	A	D	C

B: FLUID MaCHANICS

Question	1	2	3	4	\% 5	6	7	8	9	10	11	12	13	14	15
Answer	D	C	D	4 D	家令	0, \%11	A	D	B	B	A	$0.00028 \mathrm{~m}^{2} / \mathrm{s}$	C	B	13.43
Question	16	17	18	*19	20	21	22								
Answer	125.176	D	D	17\%3	482.26	D	B								

C: MATERIAL SCIENC E

Questick		2	3	4	5	6	7	8	9	10	11	12	13	14	15
Answer	\% ${ }^{\text {\% }}$	B	C	C	D	B	B	A	C	C	1:3	A	6.65 mm	-8.1	0.344
Question	16	17	18	19	20	21	22								
Answer	2.38	212	121	$\begin{array}{r} 69.61, \\ 30.39 \\ \hline \end{array}$	277.5	9.317×10^{-3}	30								

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

D：SOLID MECHANICS

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
Answer	50 mm	36 kg	$1 / 4$	$1: 1$	0.94	11	A	D	52.44	A	$1 / 2$	-0.0440	32	3	0.5
Question	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$								

E：THERMODYNAMICS

Question	1	2	3	4	5	6	7	8	9	\％	4	12	13	14	15
Answer	B	B	A	D	D	C	D	75	C	D	月）	125	B	2087.83	$\begin{array}{\|r\|} \hline 0.369 \\ 342 \\ \hline \end{array}$
Question	16	17	18	19	20	21	22								
Answer	276.7	60	35	$\begin{aligned} & 0.118, \\ & 0.235 \end{aligned}$	129	0.658	0.896								

F：PO LY／ER SCIENCE／RD ENGINEERING

Question	1	2	3	4	5，	6	7	8	9	10	11	12	13	14	15
Answer	A	A		C	A	毛	B	A	A	A	C	D	B	C	B
Question	16	17	18	， 2	20	21	22								
Answer	B	解	C	A	， 8	B	A								

G：FOOD PRESERVATIO N

34740stion	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Answeins	＊	B	D	C	C	A	C	D	D	A	D	B	A	C	A
Question	－ 6	17	18	19	20	21	22								
Answer	B	A	B	A	D	A	D								

Toll Free：1800－2000－092
Mobile： $9001297111,9829619614,9001894073,9829567114$
Website：www．vpmdasses．com
FREE Onli ne St udent Portal：examprep．vpmda sses．com
E－Mail：vpmclasses＠yahoo．com／info＠vpmclasses．com

HINTS AND SOLUTION

1.(D) On arranging the letters of 'PROJECTING' according to the given conditions, we get

$$
E \quad I \quad O \quad C \quad G \quad J \quad N \quad P \quad R \quad T
$$

In this rearrangement the fifth letter from the left is ' G '.

 'Not one can deny' in choice (c) and for any one to deny' in cho (d) correct choice is (a).
4.(B) The relationship is that of standard adjectives and nouns usikackivevinikon parlance. Thus, 'upright' is a standard adjective used to describe one's carriag\%(\%osture), and so \% n. The odd one out is option B - there is no such thing as a 'handy : sake'.
5.(B)
 Flutes

tarmoniums

Instrements

Only II follows.

The SP of the irist plot $=1.12 \mathrm{a}=1$ crore
$=1 / 12$
Similarly,
$\mathrm{b}=1 / 0.88$

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

Total $\mathrm{P}=\frac{1}{1.12}+\frac{1}{0.88}$
But total SP＝ 2 crore

Percentage profit $=\frac{2-\frac{1}{1.12}-\frac{1}{0.88}}{\frac{1}{1.12}+\frac{1}{0.88}} \times 100$
$=\frac{2(1.12)(0.88)-0.88-1.12}{2} \times 100=-1.44$

There is a lossof 1.44%

7．（B）Total Actual Sales $=29+50+75+95+55+80+50+10=444$

Total targeted sales $=28+40+65+85+40+65+40+20$ 娄 383

Actual Sales $\%=\frac{444}{8}=55.5 \%$

T argeted sales $\%=\frac{383}{8}=47.8 \% \%^{\circ} \mathrm{\#} \mathrm{~m}$
Net sales exceeded by $=55.5-$－离 $8=7.7 \%$

8．（D）
I． $2 x^{2}-9 x+9=0$
$\Rightarrow 2 x^{2}-3 x^{2}+4 *=9=2$
\Rightarrow 前 $2 \mathrm{x}-2 \mathrm{k}-3(2 \mathrm{x}-3)=0$
$\Rightarrow(2 x-\hat{*}(x-3)=0$
$\therefore=3203$
II．$y^{2}-11 y+24=0$
$\Rightarrow y^{2}-8 y-3 y+24=0$

Toll Free：1800－2000－092
Mobile：9001297111，9829619614， 90018940 73， 9829567114
Website：www．vpmdasses．com
FREE Online Student Portal：examprep．vpmdasses．com
E－Mail：vpmclasses＠yahoo．com／info＠vpmclasses．com
$\Rightarrow \mathrm{y}(\mathrm{y}-8)-3(\mathrm{y}-8)=0$
$\Rightarrow y=3$ or 8

Clearly $\quad y \geq x$
9.(C) In each row, multiply the numerical values of the left and right hand letters, puty ge result in the centre.

For example $\mathrm{N}=14$ and $\mathrm{R}=18$, NOW $14 \mathrm{X} 18=252$.
10.(C)Let B be the event of a brry leaving first
$n(B)=100-60-30=10$

Probability of a lorry leaving first $p(B)=\frac{10}{100}=\frac{1}{10}$

1.(A) Let A be a real symmetric matrix, thereffe

$$
\mathrm{A}^{\mathrm{T}}=\mathrm{A}
$$

Let α_{1} and α_{2} be different eig交 yalue of the matrix A, and X_{1} and X_{2} be the corresponding vector, then

$$
\begin{aligned}
& \left.\stackrel{H}{*} x_{2}\right)^{T}=\left(\alpha_{2} x_{2}\right)^{T} \\
& X_{2}^{T} A^{T}=\alpha_{2} \cdot X_{2}^{T}
\end{aligned}
$$

But
$A^{T}=A$,
$\therefore \quad \mathrm{X}_{2}^{\mathrm{T}} \mathrm{A}=\alpha_{2} \cdot \mathrm{X}_{2}^{\mathrm{T}}$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

Post multiply by X_{1} ，we get

$$
X_{2}^{T} A_{1}=\alpha_{2} X_{2}^{T} X_{1}
$$

But

$$
\mathrm{AX}_{1}=\alpha_{1} \mathrm{X}_{1}
$$

$\therefore \quad \mathrm{X}_{2}^{\mathrm{T}} \mathrm{X}_{1}=0$ i．e． X_{2} and X_{1} are orthogonal．

2．（A）Continuity at $x=0$ ：
L． $\lim _{x \rightarrow 0} f(x)=\lim _{h \rightarrow 0} f(0-h)$

$$
=\lim _{h \rightarrow 0}(0-h)^{2} \sin \frac{1}{0-h}
$$

$=\lim _{h \rightarrow 0} \mathrm{~h}^{2} \sin \frac{1}{\mathrm{~h}}$
$=0 \times$［finite quantity between -1 and 4 参 $=0$
R． $\lim _{x \rightarrow 0} f(x)$
$=\lim _{h \rightarrow 0} f(0+h)$
$=\lim _{h \rightarrow 0}(0+h)^{2} \frac{1}{\left(\hat{2}+\frac{1}{2}\right)}$
$=\lim$
$\mathrm{Al} 6 \mathrm{f}(0)=$
L． $\mathrm{m}_{\mathrm{x} \rightarrow 0}$ 身 $^{\prime}=R \cdot \lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})=\mathrm{f}(0)$
Deriva紋ity at $\mathrm{x}=0$
$L . f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} h \sin \frac{1}{h} \\
& =0 \times \text { finite quantity }=0
\end{aligned}
$$

$R . f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$

$$
=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} h \sin =0
$$

$\therefore \quad$ L. $f^{\prime}(0)=$ R.f $f^{\prime}(0)$
$\therefore \quad \mathrm{f}(\mathrm{x})$ is derivable at $\mathrm{x}=0$
$\therefore \quad$ The correct answer is (A)
3.(A) Here, the function being integrated is

$$
\begin{aligned}
& f(x)=x e^{x} \\
& f^{\prime}(x)=x e^{x}+e^{x}=e^{x} \neq(x+1) \\
& f^{\prime \prime}(x)=x e^{x}+e^{x}=x^{x}(x+2)
\end{aligned}
$$

 occurs at $\xi=2$

Ty ncatiok Firiror for trapezoidal rule $=T E$ (bound)

$$
=\frac{h^{3}}{12} \max \left|f^{\prime \prime}(\xi)\right|^{*} N_{i}
$$

where N_{i} is number of subintervals

$$
\mathrm{N}_{\mathrm{i}}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{~h}}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc

$$
\begin{array}{ll}
\therefore & \mathrm{T}_{\epsilon(\text { bound })}=\frac{\mathrm{h}^{3}}{12} \max \left|\mathrm{f}^{\prime \prime}(\xi)\right| * \frac{\mathrm{~b}-\mathrm{a}}{\mathrm{~h}} \\
\text { Now putting } & \mathrm{T}_{\epsilon(\text { bound })}=\frac{\mathrm{h}^{2}}{12}(2-1)\left(4 \mathrm{e}^{2}\right)=\frac{\mathrm{h}^{2}}{3} \mathrm{e}^{2} \\
\text { We get } & \frac{\mathrm{h}^{2}}{3} \mathrm{e}^{2}=\frac{1}{3} \times 10^{-6} \\
\Rightarrow & \mathrm{~h}^{2}=\frac{10^{-6}}{\mathrm{e}^{2}} \\
\Rightarrow & \mathrm{~h}=\frac{10^{-3}}{\mathrm{e}}
\end{array}
$$

Now,

$$
\text { Number of intervals }=\mathrm{N}_{\mathrm{i}}
$$

$$
=\frac{b-a}{h}=\frac{2-1}{\left(10^{-3} / e\right)}=1000
$$

4.(A) A can draw a ticket in ${ }^{3} \mathrm{C}_{1}=3$ 多多.

Number of cases in whena a can get a prize is clearly 1.

A\&in B inantraw a tieket in ${ }^{9} \mathrm{C}_{3}=\frac{9.8 .7}{3.2 .1}$

$$
\text { = } 84 \text { way. }
$$

Numbera way in which B gets all blanks

$$
={ }^{6} \mathrm{C}_{3}=\frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1}=20 .
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
$\therefore \quad$ Number of ways of getting a prize

$$
=84-20=64
$$

Thus, probability of B's success $=\frac{64}{84}=\frac{16}{21}$
$\therefore \quad$ A's probability of success : B's probability of success

$$
=\frac{1}{3}: \frac{16}{21}=7: 16
$$

5.(A) Putting $y=v x$

$$
\therefore \quad \frac{d y}{d x}=x \frac{d v}{d x}+v, \quad \frac{d^{2} y}{d x^{2}}=x \frac{d^{2} v}{d x^{2}}+2 \frac{d v}{d x}
$$

Now, putting all these values in equation (A), we gev.

$$
\begin{equation*}
\frac{d^{2} v}{d x^{2}}-2 \frac{d v}{d x}=1 \tag{A}
\end{equation*}
$$

Let $\mathrm{p}=\frac{\mathrm{dv}}{\mathrm{dx}}$ then (A) gives $\frac{\mathrm{d}}{\mathrm{dx}} / 2 \mathrm{p}=1$
which is a linear equad.
I.F. $=e^{-2 \int}$
solyit is is $\vec{F}^{-2 x}=\int 1 \cdot e^{-2 x} d x+C_{1}=-\frac{1}{2} e^{-2 x}+C_{1}$
$p=\frac{10}{d x}=-\frac{1}{2}+\mathrm{Ce}^{+2 x}$
On integrating, we get

$$
v=-\frac{1}{2} x+\frac{C_{1}}{2} e^{2 x}+C_{2} \text { which is second L.I. }
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
6.(C) Let $P(r, \theta)$ be any point on the circle $x^{2}+y^{2}=a x$

$\therefore \mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$
$\therefore \quad \frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial x}{\partial \theta}\end{array}\right|$
$=\left|\begin{array}{cc}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right|$

$$
=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)
$$

and the equation of the ireis

$$
\begin{aligned}
& =\int_{0} \int_{0}^{3 \cos \theta} \sqrt{\mathrm{a}^{2}-\mathrm{r}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)} \mathrm{r} d r d \theta \\
& =\int_{0}^{\pi / 2}\left[-\frac{1}{3}\left(\mathrm{a}^{2}-\mathrm{r}^{2}\right)^{3 / 2}\right]_{0}^{\operatorname{acos} \theta} d \theta
\end{aligned}
$$

Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& =\frac{1}{3} a^{3} \int_{0}^{\pi / 2}\left(1-\sin ^{3} \theta\right)_{0}^{3 / 2} d \theta \\
& =\frac{1}{3} a^{3}\left[(\theta)_{0}^{\pi / 2}-\frac{2}{3}\right]=\frac{1}{3} a^{3}\left(\frac{1}{2} \pi-\frac{2}{3}\right)
\end{aligned}
$$

$\therefore \quad$ The correct answer is C.
7.(D) The poles of the function $f(z)=\frac{z-3}{z^{2}+2 z+5}$ are given by $z^{2}+2 z+5=0$ \% by $\mathrm{z}=\frac{1}{2}[2 \pm \sqrt{ }(4-20)]=-1 \pm 2 \mathrm{i}$.
(A) The poles $\mathrm{z}=-1+2 \mathrm{i}$ and $\mathrm{z}=-1-2$ i are both out every where inside C.

Hence by Cauchy's Theorem we have

$$
I=\oint_{C} \frac{(z-3) d z}{\left(z^{2}+2 z+5\right)}=0
$$

\therefore We find that only pole $z=1-2 i$ lies inside the circle C. Therefore $f(z)$ is analytic everywhere inside C except at the pole $\mathrm{z}=-1$. Q i.
$\therefore \quad \quad \operatorname{Res}_{z=-1-2 i} f\left(\langle) \lim _{j-1-2 i}[(z+1+2 i) f(z)]\right.$

$$
\begin{aligned}
& \left.\lim _{\text {in }} \frac{\left.z^{2}+2 i\right)(z-3)}{z^{2}+2 z+5}\right] \\
& =(-4-2 i) /(-4 i)=i .
\end{aligned}
$$

Hence by Residue Theorem, we have

$$
\left.\mathrm{I}=\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z})=\mathrm{dz}=2 \pi \mathrm{i} \text { [residue at } \mathrm{z}=-1-2 \mathrm{i}\right]
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
=2 \pi \mathrm{i}\left[\frac{1}{2}-\mathrm{i}\right]=\pi \mathrm{i}+2 \pi=\pi(2+\mathrm{i}) .
$$

8.(B) Cauchy integral formula for nth derivative is

$$
\mathrm{f}^{\mathrm{n}}(\mathrm{~A})=\frac{\mathrm{n}!}{2 \pi \mathrm{i}} \int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{(\mathrm{z}-\mathrm{a})^{\mathrm{n}+1}}
$$

where C is any closed contour surrounding the origin

$$
\therefore \quad \mathrm{f}^{\mathrm{n}}(0)=\frac{\mathrm{n}!}{2 \pi \mathrm{i}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\mathrm{z}^{\mathrm{n}+1}}
$$

Let us assume $f(z)=e^{X Z}$
Differentiating with respect to z , we get

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{z})=\mathrm{e}^{\mathrm{Xz}} \cdot \mathrm{x} \\
& \mathrm{f}^{\prime \prime}(\mathrm{z})=\mathrm{e}^{\mathrm{xz}} \cdot \mathrm{x}^{2} \\
& \mathrm{f}^{\mathrm{n}}(\mathrm{z})=\mathrm{e}^{\mathrm{xz}} \cdot \mathrm{x}^{\mathrm{n}} \\
& \therefore \quad \quad \mathrm{f}^{\mathrm{n}}(0)=\mathrm{x}^{\mathrm{n}}
\end{aligned}
$$

Substituting this valuein equation=, we

4ayinking bốh sides by $\frac{x^{n}}{n!}$, we get

$$
\left(\frac{x^{n}}{n!}\right)^{2}=\frac{1}{2 \pi i} \int_{C} \frac{x^{n}}{n!} \frac{e^{x z} d z}{z^{n+1}}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& \quad \sum_{n=0}^{\infty}\left(\frac{x^{n}}{n!}\right)^{2}=\frac{1}{2 \pi i} \int_{C} \frac{e^{x z}}{z} d z \sum_{n=0}^{\infty} \frac{x^{n}}{n!z^{n}}=\frac{1}{2 \pi i} \int_{C} \frac{e^{x z}}{z} d z \sum_{n=0}^{\infty} \frac{(x / z)^{n}}{n!} \\
& =\frac{1}{2 \pi i} \int_{C} \frac{e^{x z}}{z} d z \cdot e^{x / z}=\frac{1}{2 \pi i} \int_{C} \frac{e^{x\left(z+\frac{1}{z}\right)}}{z} d z
\end{aligned}
$$

Now Putting $z=e^{i \theta} \Rightarrow d z=i e^{i \theta} d \theta$

$$
\begin{aligned}
& \frac{d z}{z}=\frac{i e^{i \theta} d \theta}{e^{i \theta}}=i d \theta \\
& z+\frac{1}{z}=e^{i \theta}+e^{-i \theta}=2 \cos \theta
\end{aligned}
$$

9.(A) By Gauss divergence theorem

$$
\begin{aligned}
& \iint_{S} \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{dS}}=\iiint_{V} \operatorname{div} \overrightarrow{\mathrm{~A}} \mathrm{dV}
\end{aligned}
$$

$\iint_{S}^{*}\left(x^{3} d y d z+y^{3} d z d x+z^{3} d x d y\right)=\iint_{S}\left\{\frac{\partial}{\partial x}\left(x^{3}\right)+\frac{\partial}{\partial y}\left(y^{3}\right)+\frac{\partial}{\partial z}\left(z^{3}\right)\right\} d x d y d z$.
$\left.\underset{V \rightarrow \infty}{\iiint_{0}} 3 x^{2}+3 y^{2}+3 z^{2}\right) d x d y d z$
$=3 \iiint_{V}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614 , 9001894073 , 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& =3 \iiint_{V} a^{2} d x d y d z \quad\left(\because x^{2}+y^{2}+z^{2}=a^{2}\right) \\
& =3 a^{2} \iiint_{V} d x d y d z \\
& =3 a^{2} \cdot\left(\frac{4}{3} \pi a^{3}\right)=4 \pi a^{5}
\end{aligned}
$$

10.(D) As pointed out earlier we shall use scheme 1 of the fouth order Runge - Kint methodyiz,

$$
\begin{aligned}
& \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \\
& \mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{0}+\frac{1}{2} \mathrm{~h}, \mathrm{y}_{0}+\frac{1}{2} \mathrm{k}_{1}\right) \\
& \mathrm{k}_{3}=\mathrm{hf}\left(\mathrm{x}_{0}+\frac{1}{2} \mathrm{~h}, \mathrm{y}_{0}+\frac{1}{2} \mathrm{k}_{2}\right) \\
& \mathrm{k}_{4}=\mathrm{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{3}\right) \\
& \mathrm{k}=\frac{1}{6}\left(\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\sqrt{2}\right) \\
& \mathrm{y}=\left(\mathrm{x}_{0}+\mathrm{h}\right)=\mathrm{y}_{0}+\mathrm{k}
\end{aligned}
$$

Hencel/ $=0.2(1 * 2)=0.4, \mathrm{~K}_{2}=(0.2)(1.1)(2.2)=0.484$

$\frac{k_{4}}{}=(0.2)(1.2)(2.49324)=0.5983776$
Hence $y(1.2)=2+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+2 k_{4}\right)=2.4921429$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
11.(C) T akingthe transformation $\mathrm{x}=\mathrm{e}^{\mathrm{t}}$ the equation reduces to:

$$
y_{t}^{\prime \prime}+(3-1) y_{t}{ }^{\prime}-8 y=t^{3}-t
$$

or

$$
y_{t}^{\prime \prime}+2 y_{t}^{\prime}-8 y=t^{3}-t
$$

Corresponding homogeneous equation: $\mathrm{y}_{\mathrm{t}}{ }^{\prime}+2 \mathrm{y}_{\mathrm{t}}{ }^{\prime}-8 \mathrm{y}=0$
Charaderistic equation: $r^{2}+2 r-8=(r+4)(r-2)=0$

Zeros are: $r_{1}=2$, and $r_{2}=-4$

Fundamental set of solutions: $F=\left\{e^{2 t}, e^{-4 t}\right\}$
Complementary solution: $y_{c}(t)=c_{1} e^{2 t}+c_{2} e^{-4 t}$.

Non-homogeneous term is: $\mathrm{b}(\mathrm{t})=\mathrm{t}^{3}{ }^{3} \mathrm{t}$
The UC set of $\mathrm{t}^{3}-\mathrm{t}$ is $\mathrm{S}_{1}=\left\{\mathrm{t}^{3 / \mathrm{k}^{2}}, \mathrm{t}, 1\right\}$.
The equation for partigilar solutions:

computingthe densivationk

$y p "(k)=6 A t$ 多 ${ }^{2}$ B
subssanging into the equation,
$6 A t+2 B+6 A t^{2}+4 B t+2 C-8 A t^{3}-8 B t^{2}-8 C t-8 D=t^{3}-t$
then $-8 \mathrm{~A}=1$

$$
\mathrm{A}=-1 / 8
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& 6 A-8 B=0 \quad B=-6 / 64=-3 / 32 \\
& 6 A+4 B-8 C=-1 \\
& 2 B+2 C-8 D=0 \quad D=-1 / 64 \\
& \text { and } y_{p}(t)=-18 t^{3}-3 / 32 t^{2}-1 / 64 t-7 / 256 \\
& y(t)=c_{1} e^{2 t}+c_{2} e^{-4 t}-1 / 8 t^{3}-3 / 32 t^{2}-1 / 64 t-7 / 256
\end{aligned}
$$

since $x=e^{t}$ and $t=\ln x$, then the general solution of the original efuation is:
$y(x)=c_{1} x^{2}+c_{2} x^{-4}-1 / 8 \ln ^{3} x-3 / 32 \ln ^{2} x-1 / 64 \ln x-7 / 2 \delta 6$.

B: FLUID MECHANICS

1.(D) (a)

$$
\mathrm{U}=\omega \mathrm{r} \text {; for small gap } \mathrm{Y}, \frac{\mathrm{du}}{\mathrm{dy}}=\frac{\mathrm{U}}{\mathrm{Y}}=
$$

$$
\text { NTHF}=\frac{2 \pi \mu \omega}{Y \cos \alpha} r^{3} d y ; \quad r=y \tan \alpha
$$

$$
\mathrm{d} \mathrm{~T}=\frac{2 \pi \mu \omega \tan ^{3} \alpha}{\mathrm{Y} \cos \alpha} \mathrm{y}^{3} \mathrm{dy}
$$

$$
\mathrm{T}=\frac{2 \pi \mu \omega \tan ^{3} \alpha}{\mathrm{Y} \cos \alpha} \int_{\mathrm{a}}^{a+b} \mathrm{y}^{3} \mathrm{dy} ;\left.\frac{\mathrm{y}^{4}}{4}\right|_{\mathrm{a}} ^{2+b}=\left[\frac{(\mathrm{a}+\mathrm{b})^{4}}{4}-\frac{\mathrm{a}^{4}}{4}\right]
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\mathrm{T}=\frac{2 \pi \mu \omega \tan ^{3} \alpha}{4 \mathrm{Y} \cos \alpha}\left[(\mathrm{a}+\mathrm{b})^{4}-\mathrm{a}^{4}\right]
$$

(b) $\left[(a+b)^{4}-a^{4}\right]=(0.105 \mathrm{~m})^{4}-(0.045 \mathrm{~m})^{4}=0.0001175 \mathrm{~m}^{4}$

$$
\omega=\left(90 \frac{\mathrm{rev}}{\mathrm{~min}}\right)\left(2 \pi \frac{\mathrm{radians}}{\mathrm{rev}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=3 \pi \mathrm{rad} / \mathrm{s}=3 \pi \mathrm{~s}^{-1}
$$

Heat generation rate $=$ power $=T_{\omega}=\frac{2 \pi \mu \omega^{2} \tan ^{3} \alpha}{4 \mathrm{Y} \cos \alpha}\left[(a+b)^{4}-\mathrm{a}^{4}\right]$

2.(C) We have $\underline{V}=u(x) \hat{i}, \frac{D u}{D t}=\left\langle\frac{\partial^{2}}{\partial x}=a_{x}\right.$

Assüne linetsuariation

$$
\begin{aligned}
& u(x)=\frac{2 V_{0}}{L}(x)+V_{0}=V_{0}\left(\frac{2 x}{L}+1\right) \\
& \frac{\partial u}{\partial x}=\frac{2 V_{0}}{L} \Rightarrow a_{x}=\frac{2 V_{0}^{2}}{L}\left(\frac{2 x}{L}+1\right)
\end{aligned}
$$

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．
＠ $\mathrm{x}=0$

$$
a_{x}=200 \mathrm{ft} / \mathrm{s}^{2}
$$

＠ $\mathrm{x}=\mathrm{L}$

$$
a_{x}=600 \mathrm{ft} / \mathrm{s}^{2}
$$

3．（D）Given ：Diameter at section 1，
$\mathrm{D}=0.4 \mathrm{~m} ; \mathrm{D}_{2}=0.2 \mathrm{~m}, \mathrm{~L}=2 \mathrm{~m}$,
$\mathrm{Q}=20 \mathrm{l} / \mathrm{s}=0.02 \mathrm{~m}^{3} / \mathrm{s}$ as one litre $=0.001 \mathrm{~m}^{3}=1000 \mathrm{~cm}^{3}$
Given the rate of flow is constant and equal to $0.02 \mathrm{~m}^{3} / \mathrm{s}$ ．Thayelisisk Hencethis is one－dimensional flow and velocity compone度ts in y and z direct⿳亠丷⿵冂⿱八口𧘇ons are zero or $\mathrm{v}=0, \mathrm{z}$ $=0$
\therefore Convective acceleration $=u \frac{\partial u}{\partial y}$ only

The diameter $\left(\mathrm{D}_{\mathrm{X}}\right)$ at a distance from inlet or at section $\mathrm{X}-\mathrm{X}$ is given by

$$
\text { Ni= }=0.4-\frac{0.4-0.2}{2} \times x
$$

The areaforkyss－section（ A_{x} ）at section $\mathrm{X}-\mathrm{X}$ is given by，

$$
A_{x}=\frac{\pi}{4} D_{x}^{2}=\frac{\pi}{4}(0.4-0.1 x)^{2}
$$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Fig.

$$
u=\frac{Q}{\text { Area }}=\frac{Q}{A_{x}}=\frac{Q}{\frac{\pi}{4} D^{2}}=\frac{-4 Q^{2}}{\pi(0.4-1 x)^{2}}
$$

$$
\begin{equation*}
=\frac{1.273 \mathrm{Q}}{(0.4-0.1 \mathrm{x})^{2}}=1.273 \geqslant 0.4-0.1 \mathrm{y} \mathrm{~m} / \mathrm{s} \tag{ii}
\end{equation*}
$$

To find $\frac{\partial u}{\partial x}$, we must differentik equation/ii) with respect tox.
$1.273 \mathrm{Q}(-2)(0.4-0.1 \mathrm{x})^{-1} \times(-0.1)$
[Hence Q is constant]

$$
\begin{equation*}
=0.2546 \mathrm{Q}(0.4-0.1 \mathrm{x})^{-1} \tag{iii}
\end{equation*}
$$

Substituting the value of u and $\frac{\partial u}{\partial x}$ in equation (i), we get

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Convective acceleration $=\left[1.273 \mathrm{Q}(0.4-0.1 \mathrm{x})^{-2}\right] \times\left[0.2546 \mathrm{Q}(0.4-0.1 \mathrm{x})^{-1}\right]$

$$
\begin{aligned}
& =1.273 \times 0.2546 \times \mathrm{Q}^{2} \times(0.4-0.1 \mathrm{x})^{-3} \\
& =1.273 \times 0.2546 \times(0.02)^{2} \times(0.4-0.1 \mathrm{x})^{-3} \\
& \quad\left[\because \mathrm{Q}=0.02 \mathrm{~m}^{3} / \mathrm{s}\right]
\end{aligned}
$$

\therefore Convective acceleration at the middle (where $\mathrm{x}=1 \mathrm{~m}$)

$$
\begin{aligned}
& =1.273 \times 0.2546 \times(0.02)^{2} \times(0.4-1+1 \times 1 / 2 \\
& =1.273 \times 0.2546 \times(0.02)^{2} \text { 多 }(0.3)^{-3} \mathrm{~m} / \mathrm{S}^{2} \\
& =0.0048 \mathrm{~m} / \mathrm{s}^{2} \text {. }
\end{aligned}
$$

4.(D)
$\mathrm{A}=\pi \mathrm{x}^{2}$
$\mathrm{x}=\sqrt{2 R \mathrm{R}} \mathrm{i} \mathrm{h}^{2}$
Acce $\begin{gathered}\text { Acration } \geqslant \mathrm{a}_{\mathrm{c}} \\ \mathrm{Cda} \sqrt{2 g} \\ \mathrm{~h}_{1}\end{gathered}-\frac{2 R \mathrm{~h}-\mathrm{h}^{2}}{\sqrt{\mathrm{~h}}} \mathrm{dh}$

$$
a_{c}=\frac{14 \pi R^{3 / 2}}{15 C d a \sqrt{2 g}}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
5.(B) Bernoulli's equation is applicable for non - viscous flow. At boundary layer viscous flow, viscous force acts. Dueto this Bernoulli's equation can be used only outside the boundary layer.
6. . 011

Given :
Distance of nozzle above ground $\quad=1$
Angle of inclination,

$$
\theta=45^{\circ}
$$

Dia. of nozzle,
$\mathrm{d} \quad=50 \mathrm{~mm}=.05 \mathrm{~m}$
\therefore Area,

The horizontal dizance ,
The co-ordinates of the point B , which is on the cenaelide jet of water and is situated on the ground, with respect to A (origin) are
$\mathrm{x}=4 \mathrm{~m}$ and $\mathrm{y}=-1.0 \mathrm{~m}$ \{From Aforint B 却yerticaly down by 1 m$\}$
The equation of the jet is given

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{array}{cc}
& -1.0=4-\frac{78.48 \times 2}{\mathrm{U}^{2}} \text { or } \frac{78.48 \times 2}{\mathrm{U}^{2}}=+4.0+1.0=5.0 \\
\therefore & \mathrm{U}^{2}=\frac{78.48 \times 2.0}{5.0}=31.39 \\
\therefore & \mathrm{U}=\sqrt{31.39}=5.60 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Now the rate of flow of fluid $=$ Area \times Velocty of jet

$$
=\mathrm{A} \times \mathrm{U}=.001963 \times 5.6 \mathrm{~m}^{3} / \mathrm{sec}
$$

$$
=0.01099 \approx .011 \mathrm{~m}^{3} / \mathrm{s} .
$$

7.(A) Given: $u=y^{3} / 3+2 x-x^{2} y$

$$
\frac{\partial u}{\partial y}=\frac{3 y /{ }^{2}}{3}-x^{2}=y^{2}-x^{2}
$$

Also

$$
=x y^{2}=2 y_{-x}{ }^{3} B
$$

$$
\therefore \quad \quad \Rightarrow \quad \frac{\partial y}{\partial y}=2 x y-2
$$

$$
\frac{\partial v}{\partial x}=y^{2}-\frac{3 x^{2}}{3}=y^{2}-x^{2}
$$

(i) For cowo-dimensional flow, continuity equation is $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Substituting the value of $\frac{\partial u}{\partial x}$ and $\frac{\partial v}{\partial y}$, we get

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=2-2 x y+2 x y-2=0
$$

$\therefore \quad$ It is a possible case of fluid flow.
(ii) Rotation, ω_{z} is given by $\omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=\frac{1}{2}\left[\left(y^{2}-x^{2} y^{2}-x^{2}\right)\right)^{0}$
\therefore Rotation is zero, which means it is case of irrotational how.
8.(D) Given: $\quad \phi=x(2 y-1)$

The velocity components in the direction of x and y are

$$
\begin{aligned}
& \mathrm{v}=-\frac{\partial \phi}{\partial \mathrm{y}} \stackrel{\partial}{\text { 为 }}[\mathrm{x}(2-1)]=-[2 \mathrm{x}]=-2 \mathrm{x}
\end{aligned}
$$

At the point $P(4,5)$, i. , , $\lll=4, y=5$

Value of Stream Function at P
We know that $\frac{\partial \psi}{\partial y} \quad=-u=-(1-2 y)=2 y-1$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
and

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=v=-2 x \tag{ii}
\end{equation*}
$$

Integrating equation (i) w.r.t. ' y ', we get

$$
\int \mathrm{d} \psi=\int(2 \mathrm{y}-1) \mathrm{dy} \text { or } \psi=\frac{2 \mathrm{y}^{2}}{2}-\mathrm{y}+\text { Constant of integration. }
$$

The constant of integration is not a function of y but it can be a functioriot iefle value of constant of integration is k . Then

$$
\begin{equation*}
\psi \quad=y^{2}-y+k . \tag{iii}
\end{equation*}
$$

Differentiatingthe above equation w.r.t. ' x ', we get

$$
\frac{\partial \psi}{\partial x}=\frac{\partial k}{\partial x}
$$

But from equation (ii), $\frac{\partial \psi}{\partial x}=-2 x \Rightarrow$
Equating the value of $\frac{\partial \psi}{\hat{4} x}$, wèett $\frac{\partial k}{\partial x}-2 x$.
Integra ing thi kequat ion, we vet $k=\int-2 x d x=-\frac{2 x^{2}}{2}=-x^{2}$.
Substi"*ing tiks valu" 5 F in equation (iii), we get $\psi=y^{2}-\mathrm{y}-\mathrm{x}^{2}$.
9.(B) The elocitys the combined flow at this point is v_{θ}. This the vector sum of theradial and tangential
*stacilites so
$v_{\theta}=\left\{v_{T}^{2}+v_{R}^{2}\right\}^{1 / 2}$

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

$\mathrm{C}=2 \quad \mathrm{u}=3$
$\mathrm{v}_{\mathrm{R}}=\mathrm{d} \phi / \mathrm{dr}=\mathrm{u} \cos \theta$
${ }^{\mathrm{v}} \mathrm{T}=\mathrm{d} \psi / \mathrm{dr}=\mathrm{C} / \mathrm{r}-\mathrm{u} \sin \theta$

At point $A, \theta=90^{\circ}, R=0.5, v_{R}=0$ ，
hence $V_{T}=7 \mathrm{~m} / \mathrm{s}$ and $\mathrm{V}_{\theta \mathrm{A}}=7 \mathrm{~m} / \mathrm{s}$
At point $\mathrm{B}, \theta=0^{\circ}, \mathrm{R}=0.5, \mathrm{~V}_{\mathrm{R}} \not \ddot{F}^{3} \mathrm{~m} / \mathrm{s}$ ，
hence $\mathrm{V}_{\mathrm{T}}=4 \mathrm{~m} / \mathrm{s}$ and $v_{\theta B}=5$ 氽会 s

The mainstream pressi＊，is p and the velocity is u ．
Apply Bernoulli bet wee theryain stream and point A．

Ap鿖y Berisklli between the main stream and point B．

The pressure difference is then

$$
\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}=(\mathrm{r} / 2)\{\rho / 2\}\left\{\mathrm{w}_{\theta \mathrm{B}}^{2}-\mathrm{V}_{\theta \mathrm{A}}^{2}\right\}=-11964 \text { Pascal }
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
10.(B) First write down the indecial form of the equation (covered overleaf).

$$
\mathrm{f}=\mathrm{Cl}^{\mathrm{a}} \mathrm{~g}
$$

Next write down the basic dimensions of all the variables.

$$
\begin{aligned}
& {[\mathrm{f}]=\mathrm{T}^{-1}} \\
& {[1]=\mathrm{L}^{1}}
\end{aligned}
$$

$$
[\mathrm{g}]=\mathrm{LT}^{-2}
$$

Next substitute the dimensions in the place of the variable

$$
\mathrm{T}^{-1}=\left(\mathrm{L}^{1}\right)^{\mathrm{a}}\left(\mathrm{LT}^{-2 \mathrm{~b}}\right)
$$

Since the equation must be homogeneous then the pory dimension must be the same on the left and right side of the equation. If a dimension does appear at allthen it is implied that it exists

$$
\mathrm{T}^{-1}=\mathrm{T}^{-2 \mathrm{~b}}
$$

equade power多\& Length.
$\mathrm{L}=\mathrm{K}_{1} \mathrm{a} \mathrm{L}$
$0=1 \mathrm{a}+\mathrm{b}$ hence $\mathrm{a}=-\mathrm{b}=-1 / 2$
$M^{0}=M^{0}$ y ields nothing in this case.

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Now substitutethe values of a and b back into the original equation and we havethe folbwing.

$$
\begin{aligned}
& \mathrm{f}=\mathrm{Cl}^{-1 / 2} \mathrm{~g}^{1 / 2} \\
& \mathrm{f}=\mathrm{C}(\mathrm{~g} / \mathrm{l})^{1 / 2}
\end{aligned}
$$

The frequency of a pendulum may be derived from basic mechanics and showix $\leqslant 0$

$$
\mathrm{f}=(1 / 2 \pi)(\mathrm{g} /)^{1 / 2}
$$

we could find C by plotting a graph of f against $\left.(\mathrm{g} / 1)^{1 / 2}\right)$.
11.(A) $R=$ function $(D v \rho K)=C D^{a}{ }^{b} \rho^{c} K^{d}$

There are 3 dimensions and 5 quantities so there that the one dimensionless group will be formed wit R api**
Π_{1} is the group formed bet ween K and $/ \mathrm{v} \rho$

$$
[\mathrm{v}]=\mathrm{LT}^{-1}
$$

-3

$$
[\rho]=\mathrm{ML}^{-3}
$$

$\mathrm{ML}^{-1} \mathrm{~T}^{-2}=\mathrm{L}^{\mathrm{a}}\left(\mathrm{LT}^{-1}\right) \mathrm{b}_{\left(\mathrm{ML}^{-3}\right)}^{\mathrm{c}} \quad \mathrm{MLT}^{-2}=\mathrm{L}^{\mathrm{a}}\left(\mathrm{LT}^{-1}\right) \mathrm{b}_{\left(\mathrm{ML}^{-3}\right)^{\mathrm{c}}}$
$\mathrm{ML}^{-1} \mathrm{~T}^{-2}=\mathrm{L}^{\mathrm{a}+\mathrm{b}-3 \mathrm{c}} \mathrm{M}^{\mathrm{c}} \mathrm{T}^{-\mathrm{b}} \mathrm{ML}^{1} \mathrm{~T}^{-2}=\mathrm{L}^{\mathrm{a}+\mathrm{b}-3 \mathrm{c}} \mathrm{M}^{\mathrm{c}} \mathrm{T}^{-\mathrm{b}}$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Time $\quad-2=-\mathrm{bib}=2 \quad$ Time $-2=-b, b=2$
Mass $\mathrm{c}=1 \quad$ Mass $\mathrm{c}=1$
Length $-1=\mathrm{a}+\mathrm{b}-3 \mathrm{c}$ Length $1=\mathrm{a}+\mathrm{b}-3 \mathrm{c}$

$$
\begin{array}{rr}
\mathrm{a}=0 & 1=\mathrm{a}+2-3 \quad, \mathrm{a}=2 \\
\mathrm{~K}=\Pi_{2} \mathrm{D}^{\circ} \mathrm{v}^{2} \rho^{1} & \mathrm{R}=\Pi_{1} \mathrm{D}^{2} \mathrm{v}^{2} \rho^{1}
\end{array}
$$

$$
\Pi_{2}=\frac{K}{\rho v^{2}} \quad \Pi_{1}=\frac{R}{\rho v^{2} D^{2}}
$$

It follows that $(\mathrm{k} / \rho)=\mathrm{a}^{2}$ and so $\Pi_{2}=(\mathrm{a} / \mathrm{v})^{2}$

The ratio v/a is called the Mach number (a) so (Ma)
Π_{1} is the Newton Number Ne.

The equation may be written as

$$
\Pi_{1}=\phi \Pi_{2} \mathrm{~N}_{\mathrm{e}} \text { or } \mathrm{Ne}=\phi\left(\mathrm{M}_{\mathrm{a}}\right)
$$

12. $0.00028 \mathrm{~m}^{2} / \mathrm{s}$

$$
\text { Q } \frac{\text { Volune }}{\text { Time }}=\frac{13 \times 10^{-4}}{600}=2.17 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}
$$

$$
\begin{equation*}
\mathrm{Q}=\frac{\pi \mathrm{d}^{4} \gamma \mathrm{~h}_{\mathrm{L}}}{128 \mu \ell}=\frac{\pi \mathrm{d}^{4}\left(\rho \mathrm{~g}_{\mathrm{n}}\right) \mathrm{h}_{\mathrm{L}}}{128 \mu \ell}=\frac{\pi \mathrm{d}^{4} \mathrm{~g}_{\mathrm{n}} \mathrm{~h}_{\mathrm{L}}}{128 \mathrm{v} \ell} \tag{A}
\end{equation*}
$$

Now, solving the above equation for v ,

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\mathrm{v}=\frac{\pi \mathrm{d}^{4} \mathrm{~g}_{\mathrm{n}} \mathrm{~h}_{\mathrm{L}}}{128 \mathrm{Q} \ell}=\frac{3.14 \times(4 / 1000)^{4} \times 9.81 \times 1}{128 \times\left(217 \times 10^{-6}\right) \times(100 / 1000)}=0.00028 \mathrm{~m}^{2} / \mathrm{s}
$$

13.(C) By Chezy's formula

$$
\mathrm{V}=\mathrm{c} \sqrt{\mathrm{mi}}
$$

where

$$
\begin{aligned}
& m=\frac{A}{P}=\frac{d}{4} \\
i= & \frac{h_{f}}{L}
\end{aligned}
$$

By Darcy Weiscbach equation

$$
h_{f}=\frac{f I V^{2}}{2 g d}
$$

Substituting Values

$$
\begin{aligned}
& h_{f}=\frac{\mathrm{fLC}^{2}(\mathrm{mi})}{2 \mathrm{gd}} \\
& y_{1}=\frac{f \times K \times C^{2} \times \frac{A}{4} \times \frac{D_{1}}{X}}{2 \times g \times \geqslant \geqslant} \\
& 8 \mathrm{~g}=\mathrm{fc}^{4} \\
& =\sqrt{\frac{8 g}{f}}
\end{aligned}
$$

14.(B) $\quad \delta^{*}=\int_{0}^{\delta}\left[1-\frac{u}{u_{1}}\right] d y=\int_{0}^{\delta}\left[1-\sin \left\{\frac{\pi y}{2 \delta}\right\}\right]$

$$
\delta^{*}=\left[y+\frac{2 \delta}{\pi} \cos \left\{\frac{\pi y}{2 \delta}\right\}\right]_{0}^{\delta}=\{\delta+0\}-\left\{0+\frac{2 \delta}{\pi}\right\}=0.364 \delta
$$

15. 13.43
$F_{D}=W-F_{b}=C_{D} \rho\left(V^{2} / 2\right) A$
$\mathrm{W}-\left(\gamma\left(\pi \mathrm{D}^{3} / 6\right)=\mathrm{C}_{\mathrm{D}} \rho\left(\mathrm{V}^{2} / 2\right)\left(\pi \mathrm{D}^{2} / 4\right)\right.$
$99-[(62.4)(2.0 / 1.94)](\pi)(1.2)^{3} / 6=\mathrm{C}_{\mathrm{D}}(2.0)\left(\mathrm{V}^{2} / 2\right)(\pi)(1.2)^{2} / 4$
$99-58.20=1.131 \mathrm{C}_{\mathrm{D}} \mathrm{V}^{2}$
$C_{D} V^{2}=36.07$
$\mathrm{N}_{\mathrm{R}}=\operatorname{DV} \rho / \mu=(1.2)(\mathrm{V})(2.0) /\left(3.3 \times 10^{-5}\right)=72727 \mathrm{~V}$

 13.43 fps .
16. 125.756

Given :
Dia, aikinlet,

$$
\mathrm{d}_{1}=30 \mathrm{~cm}
$$

Area at in

$$
\begin{aligned}
& \mathrm{a}_{1}=\frac{\pi}{4} \mathrm{~d}_{1}^{2}=\frac{\pi}{4}(30)^{2}=706.85 \mathrm{~cm}^{2} \\
& \mathrm{~d}_{2}=15 \mathrm{~cm}
\end{aligned}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
\therefore \quad \mathrm{a}_{2} & =\frac{\pi}{4} \times 15^{2}=176.7 \mathrm{~cm}^{2} \\
\mathrm{C}_{\mathrm{d}} & =0.98
\end{aligned}
$$

Reading of differential manometer $=x=20 \mathrm{~cm}$ of mercury.
\therefore Difference of pressure head is given as
or
$h=x\left[\frac{S_{h}}{S_{0}}-1\right]$
where $S_{h}=$ Sp. gravity of mercury $=13.6, S_{0}=$ Sp. gravit of water $=1 *$

$$
=20\left[\frac{13.6}{1}-1\right]=20 \times 12.6 \mathrm{~cm}=2 \text { Vame of wate. }
$$

$$
\begin{aligned}
& \frac{86067593.36}{\sqrt{499636.9-31222.9}}=\frac{86067593.36}{684.4} \\
& F_{=125756 \mathrm{~cm}^{3} / \mathrm{s}=\frac{125756}{1000} \quad \text { lit } / \mathrm{s}=\mathbf{1 2 5 . 7 5 6} \mathrm{lit} / \mathrm{s} .}
\end{aligned}
$$

17.(D) Given:

Dia. of smooth pipe, $\mathrm{d}=80 \mathrm{~mm}=.08 \mathrm{~m}$

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

Length of pipe，$\quad \mathrm{L}=800 \mathrm{~m}$

Discharge，

$$
\mathrm{Q}=0.048 \mathrm{~m}^{3} / \text { minute }=\frac{0.48}{60}=.008 \mathrm{~m}^{3} / \mathrm{s}
$$

Kinematic viscosity， $\mathrm{v}=.015$ stokes $=.015 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \quad\left[\right.$ Stokes $=\mathrm{cm}^{2} / \mathrm{s}$ ］
Density of water，$\quad \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Mean velocity

$$
\mathrm{V}=\frac{\mathrm{Q}}{\text { Area }}=\frac{0.008}{\frac{\pi}{4}(.08)^{2}}=1.591 \mathrm{~m} / \mathrm{s}
$$

\therefore Reynolds number， $\mathrm{R}_{\mathrm{e}}=\frac{\mathrm{V} \times \mathrm{d}}{\mathrm{V}}=\frac{1.591 \times 0.08}{.015 \times 10 \%{ }_{2}^{*}}=8.485 \times 10^{2}$ 多
As the Reynolds number of more than 4000 ，the flow sifrbul多．
Now the value of＇ f ＇is given by $\mathrm{f}=\frac{\mathrm{F}}{\mathrm{F}} \mathrm{R}_{\mathrm{e}}^{1 / 4}$ $\frac{.0 .91}{\left(8 \not 8485 \times 10^{4}\right)^{1 / 4}}=.004636$

Head lost is given as

18．（D）Thicknestial aminar sub紋yer is given by

$$
=\frac{11.6 \times v}{u_{*}}=\frac{11.6 \times .015 \times 10^{-4}}{.0765}=2.274 \times 10^{-4} \mathrm{~m}
$$

$$
=2.274 \times 10^{-2} \mathrm{~cm}=.02274 \mathrm{~cm} .
$$

（where U_{*}^{*} is calculated by Wall shearing stress，τ_{0} is given as

$$
\tau_{0}=\frac{f \rho V^{2}}{2}=.0004636 \times \frac{1000}{2} \times 1.591^{2}=5.866 \mathrm{~N} / \mathrm{m}^{2}
$$

Toll Free：1800－2000－092
Mobile： $9001297111,9829619614,9001894073,9829567114$
Website：www．vpmdasses．com
FREE Online St udent Portal：examprep．vpmdasses．com
E－Mail：vpmclasses＠yahoo．com／info＠vpmclasses．com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Centre-line vebcity, $u_{\max }$ for smooth pipe is given as

$$
\frac{\mathrm{u}}{\mathrm{U}_{*}}=5.75 \log _{10} \frac{\mathrm{u}_{*} \mathrm{y}}{\mathrm{~V}}+5.55
$$

where u_{*} is shear velocity and $\left.=\sqrt{\frac{\tau_{0}}{\rho}}=\sqrt{\frac{5.866}{1000}}=0.0765 \mathrm{~m} / \mathrm{s}\right)$
19. 177.03

Drag force $=F_{D}=C_{D} A\left(\rho U^{2 / 2}\right)=34.72 N$

Lift force $=F_{L}=C_{L} A\left(\rho U^{2} / 2\right)=173.6 \mathrm{~N}$

Resultant force $=\mathrm{F}_{\mathrm{R}}=\left(\mathrm{F}_{\mathrm{D}}^{2}+\mathrm{F}_{\mathrm{L}}^{2}\right)^{1 / 2}=177.03$
20. 482.26

Power $=\mathrm{F}_{\mathrm{D}} \times \mathrm{U}=482.26 \mathrm{Kw}$
21.(D) Given:

Shape of the Rankine
When a unifoink 城多 is flowis over a doublet and doublet and uniform flow are in line, then the shape *, ahe iknkine at will be a circle of radius $=\sqrt{\frac{\mu}{2 \pi U}}$.
22.(\%) Radiun of the 1\%/ikine circle

$$
R=r=\sqrt{\frac{\mu}{2 \pi U}}=\sqrt{\frac{18}{2 \pi \times 12}}=\mathbf{0 . 4 8 8} \mathrm{m}
$$

C: MATERIAL SCIENC E

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
1.(C) In the fcc system of crystals, atomic radius $r=\frac{a}{2 \sqrt{2}}$ Where a is lattice parameter or bond length.

So that bond length $\mathrm{a}=2 \sqrt{2}(\mathrm{r})=2 \sqrt{2} \times 1.273=3.6 \AA$
We know that density is given by

$$
\rho=\frac{\mathrm{nA}}{\mathrm{Na}^{3}}
$$

Where n is number of atoms per unit cell, A is atomic weight N is \neq. parameter.

$$
\begin{aligned}
& \therefore \quad \rho=\frac{4 \times 63.5}{6.02 \times 10^{26} \times\left(3.6 \times 10^{-10}\right)^{3}} \\
& \because \quad \mathrm{~N}=6.02 \times 10^{23} \text { molecules per gn mole }
\end{aligned}
$$

$$
=6.02 \times 10^{26} \text { molecules perkg mole }
$$

$$
\therefore \quad \rho=0.9043 \times 10^{4}=9.0 \text { 法送 } \times 10^{3} \mathrm{Kg}
$$

2.(B) We know that, in th mit cell there are four sodium ions and four chlorine ions. Thus, the total volume of unit cell,

$2\left(\mathrm{r}_{\mathrm{Na}}+2 \mathrm{r}_{\mathrm{Cl}}\right)$

$$
=2[0.098+0 \cdot 181]=0558 \mathrm{~nm}
$$

\therefore Volume of the unit cell

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
=(0.558)^{3}=0.1737 \mathrm{~nm}^{3}
$$

Thus, the packing factor

$$
=\frac{0.1151}{0.1737}=0.662
$$

3.(C) We know that, interplaner spacing, d is given by

$$
\mathrm{d}=\frac{\mathrm{a}}{\sqrt{\mathrm{~h}^{2}+\mathrm{k}^{2}+l^{2}}}
$$

where, $\mathrm{a}=$ latt ice of unit cell
In case of FCC structure,

4.(C) The Maxwefl mye instrain at ayy time t is
$\gamma(t) \Rightarrow=\frac{\tau_{0}}{G_{1}}+\frac{\tau_{0} t}{\mu_{1}}$ and
Woigt Kelvin strain at is
$\gamma(\mathrm{t})=\frac{\tau_{0}}{\mathrm{G}_{2}}\left[1-\mathrm{e}^{-\frac{\mathrm{G}_{2} \mathrm{t}}{\mu_{2}}}\right]$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

According to the problem，for $t=50 \mathrm{sec}$,

$$
\begin{aligned}
& \text { Maxwell strain } \quad=\text { Voigt-Kelvin strain } \\
& \Rightarrow \quad \frac{\tau_{0}}{G_{1}}+\frac{\tau_{0} t}{\mu_{1}}=\frac{\tau_{0}}{G_{2}}\left[1-e^{\mathrm{G}_{2} \mathrm{t} / \mu_{2}}\right] \\
& \Rightarrow \quad \frac{1}{G_{1}}+\frac{t}{\mu_{1}}=\frac{1}{G_{2}}\left[1-e^{G_{2} t / \mu_{2}}\right] \\
& \Rightarrow \quad \frac{1}{G_{1}}+\frac{t}{\mu_{1}}=\frac{1}{G_{2}}\left[1-e^{G_{2} t / \mu_{2}}\right] \\
& \Rightarrow \quad \frac{1}{\mathrm{G}_{1}}=3.7327 \times 10^{-11} \\
& \Rightarrow \quad \mathrm{G}_{1}=26.79 \text { 飛 } 10^{9} \mathrm{~N} / \mathrm{m}^{2} \\
& \Rightarrow \\
& \mathrm{G}_{1} \quad \neq 26.79 \mathrm{G} \text { N漳 }{ }^{2}
\end{aligned}
$$

5．（D）Let，$x=$ the wt．\％carbon the hys，exeutectoid teel．
We also know that，
Eutectoid ferrite＝total and ande proeutectoid ferrite

Toll Free：1800－2000－092
Mobile： $9001297111,9829619614,9001894073,9829567114$
Websit e：www．vpmdasses．com
E－Mail：vpmclasses＠yahoo．com／info＠vpmclasses．com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Fig.
Using Fig., and applying lever rule,

We can make the equation (i) as:

$\sigma \Rightarrow=\mathrm{E} \| \Delta \mathrm{F}$
$\sigma \quad=$ tensile temperature stress, $\mathrm{E}=$ Young's modulus of elasticity
$\alpha=$ Linear coefficient of thermalexpansion, $\mathrm{T}_{\mathrm{f}}=$ final temperature,
$\mathrm{T}_{0}=$ Initial temperat ure.

Toll Free: 1800-2000-092
Website: www.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Given data, $\mathrm{T}_{0}=20^{\circ}$;

$$
\begin{aligned}
\sigma & =-172 \mathrm{MPa} ; \\
\mathrm{E} & =100 \mathrm{GPa} ; \\
\alpha & =20 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1} \\
\text { Now, } \quad \mathrm{T}_{\mathrm{f}} & =\mathrm{T}_{0}-\frac{\sigma}{\mathrm{E} \cdot \alpha} \Rightarrow \quad \mathrm{~T}_{\mathrm{f}}=20-\frac{-172}{\left(100 \times 10^{3}\right)(20 \times 10,10, ~} \\
\therefore \quad & \mathrm{T}_{\mathrm{f}} \quad=20+86=106^{\circ} \mathrm{C}
\end{aligned}
$$

7.(B) Given data;

$$
\begin{aligned}
\sigma_{\mathrm{f}} & =300 \mathrm{MPa} \\
\mathrm{~K}_{\mathrm{IC}} & =3 \cdot 6 \mathrm{MPa} \sqrt{\mathrm{~m}} ; \\
\mathrm{Y} & =1
\end{aligned}
$$

The fracture toughness equat io is

$$
\mathrm{K}_{\mathrm{IC}}=\mathrm{Y} \cdot \sqrt{\pi \cdot \mathrm{a}}
$$

$$
\Rightarrow \quad=\quad 3.6 \quad \geqslant 300 \sqrt{\pi \cdot a}
$$

$$
\Rightarrow \text { 䏚 }{ }^{2}\left(\frac{3.6}{300}\right)^{2} \frac{1}{\pi}
$$

$$
\mathrm{a} \quad=4.58 \times 10^{-5} \mathrm{~m}=45.8 \mu \mathrm{~m}
$$

Thus, the largest internal crack

$$
\begin{aligned}
& =2 \mathrm{a} \\
& =2 \times 45.8 \mu \mathrm{~m}
\end{aligned}
$$

Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
=91.6 \mu \mathrm{~m}
$$

8.(A) We know that,

$$
\begin{array}{ll}
& \mathrm{V}=\mathrm{iR}, \text { and } \mathrm{R}=\rho \frac{l}{\mathrm{~A}} \\
\therefore & \\
\therefore & \quad \mathrm{~V} \quad \mathrm{~A} \times \rho \frac{l}{\mathrm{~A}} \\
\Rightarrow & =\mathrm{i} \rho \frac{l}{\mathrm{~A}} \\
\Rightarrow & \frac{\pi}{4} \mathrm{~d}^{2}=\mathrm{i} \rho \cdot \frac{l}{\mathrm{~A}} \\
\frac{\pi}{4} \mathrm{~d}^{2}=\mathrm{i} \cdot \frac{1}{\sigma} \cdot \frac{l}{\mathrm{~V}}
\end{array}
$$

$$
\therefore \quad \mathrm{d} \quad=\sqrt{\frac{41 l}{\pi \mathrm{VV}_{\mathrm{V}}}}
$$

Given that, $\quad i=12$
9.(C) The lattice parameter ' a ' for MgO is

Toll Free: 1800-2000-092
Website: www.vpmdasses.com

Mobile: $9001297111,9829619614,9001894073,9829567114$
FREE Online Student Portal: examprep.vpmdasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& \text { d }=6.013 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& \mathrm{a}=2\left(\mathrm{r}_{\mathrm{Mg}^{++}}+\mathrm{r}_{\mathrm{O}^{2}}\right) \\
\Rightarrow \quad & \mathrm{a} \quad=2(0.78+1.32) \\
\therefore \quad & \mathrm{a} \quad=4.20 \AA
\end{aligned}
$$

The effective number of oxygen anions at FCC positions in the unit cell $=4$.
The effective number of magnesium cations in the octahedral voids

$$
=1(\text { body centre })+12 \times \frac{1}{4}(\text { mid point of cube e } \stackrel{H}{\mathrm{~g}} \mathrm{~s})=4
$$

Now, Density $=\frac{\text { Mass of atoms in unit cell }}{\text { Volume of unit cell }}$

$$
=\frac{(16+24 \times 3) \times 1.660 \times 10^{-2} \times 3}{4.20^{3} \times 10^{-30}}=3610 \mathrm{~kg} / \mathrm{m}^{3} .
$$

10.(C) In Atomic configuration $1 s^{2} 2 s^{2}{ }^{2} p^{6}=3 s^{2} \sum^{6} x^{6}$ all hell are fill so this is configuration of inert gas (Ar) $[\mathrm{P} \rightarrow 3]$.

Na is a strongly electrópositive अeal [O
1], $\mathrm{C} \ell$ is a strongly electronegative element because it have negative $[\mathrm{R} \rightarrow 4]$

Si is four valeris tentenge easify can share electron with other so made covalent bond $[\mathrm{S} \rightarrow 2]$.
11. $1: 3$

If denotethe respective weight compositions as $\mathrm{C}_{\mathrm{Cu}}=49.2 \%$ and $\mathrm{C}_{\mathrm{Au}}=50.8 \%$
*tamict weight, $\mathrm{Cu}=64 \mathrm{amu}$ and $\mathrm{Au}=197 \mathrm{amu}$
The percentage of atom is given by,

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
&{ }^{C^{\prime}}{ }_{\mathrm{Cu}} \quad=\frac{\mathrm{C}_{\mathrm{Cu}} \mathrm{~A}_{a u}}{\mathrm{C}_{C u} \mathrm{~A}_{a u}+\mathrm{C}_{A u} \mathrm{~A}_{A u}} \times 100 \\
&=\frac{(49 \cdot 2)(64)}{(49 \cdot 2)(64)+(508)(197)} \times 100=23.93 \mathrm{at} \% \\
& \mathrm{C}^{\prime}{ }_{\mathrm{Au}}=\frac{\mathrm{C}_{A u} \mathrm{~A}_{A u}}{\mathrm{C}_{\mathrm{Cu}} \mathrm{~A}_{a u}+\mathrm{C}_{A u} \mathrm{~A}_{A u}} \times 100 \\
&=\frac{(50 \cdot 8)(197)}{(50 \cdot 8)(197)+(49 \cdot 2)(64)} \times 100=76.07 \mathrm{at} \%
\end{aligned}
$$

The atomic percentage ratio is $\mathrm{Cu}: \mathrm{Au}=\frac{23.93}{76.06} \approx 1: 3$
12.(A) The fracture strength in case of Brittle materials can berepresentited as:

$$
\sigma_{\mathrm{f}}=\left(\frac{\mathrm{E} \gamma_{\mathrm{s}}}{4 \mathrm{c}}\right)^{1 / 2}
$$

where, $\quad \sigma_{\mathrm{f}}=$ fracture stress,

$$
\mathrm{E}=\text { Young's modulus, }
$$

$\gamma_{\mathrm{S}}=$ Specy ic \#urface energy,

$$
\mathrm{c}=\text { half length of crack }
$$

According to the giverinumblem,

$$
=2 \mathrm{~m} \%{ }^{\prime}
$$

$$
\gamma_{\mathrm{S}}=1 \mathrm{~J} / \mathrm{m}^{2} ;
$$

$$
=2 \times{ }^{6} \mathrm{~m} \text {; }
$$

E $=70 \mathrm{GN} / \mathrm{m}^{2}=70 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
$\therefore \quad \sigma_{f} \quad=\left(\frac{70 \times 10^{9} \times 1}{4 \times 2 \times 10^{-6}}\right)^{1 / 2}=0.935 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}=935 \mathrm{MPa}$

Toll Free: 1800-2000-092
Website: www.vpmdasses.com

Mobile: $9001297111,9829619614,9001894073,9829567114$
FREE Online St udent Portal: examprep.vpmdasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

13. 6.65 mm

Let θ be the inclination of AC with the horizontal.

$$
\tan \theta=\frac{3}{4}, \sin \theta=\frac{3}{5}, \cos \theta=\frac{4}{5}
$$

Let T be the tension in the member AC. Fig., shows the free body diagram fy* tre member BC.
Takingmoments about the pin B

$$
\begin{aligned}
& \mathrm{T} \sin \theta \times 4=(2 \times 1)+(2 \times 3.5) \\
& \mathrm{T} \quad=\frac{9}{4 \sin \theta}=\frac{9}{4} \cdot \frac{5}{3}=3 \cdot \$ \sqrt{2 N}
\end{aligned}
$$

Vertical reaction at $\mathrm{B}=\mathrm{V}_{\mathrm{b}}=4-\mathrm{T} \sin \theta$

Horizontal reacion at $\mathrm{B}=\mathrm{H}_{\mathrm{b}}$ 盎 $\cos \theta=3.85 \times \frac{4}{5}=3 \mathrm{kN}$

Resultant reaction at B令 $\bar{g}_{6}=\sqrt{3^{2}+1.75^{2}}=3.473 \mathrm{kN}$

Letid be thes diameter of the pin at B

$$
2 \mathrm{f}_{\mathrm{s}} \frac{\pi \mathrm{~d}^{2}}{4}=\mathrm{R}_{\mathrm{b}}
$$

$$
\therefore \quad 2 \times 50 \times \frac{\pi \mathrm{d}^{2}}{4}=3.473 \times 1000
$$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Websit e: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
$\therefore \quad \mathrm{d}=6.65 \mathrm{~mm}$, say 7 mm .
14. $-8 \cdot 1$

In case of BCC structure

Number of atoms per unit cell $=2$
and, Lattice parameter, $\quad a \quad=\frac{4 r}{\sqrt{3}}$
Thus, the volume per atom is $\frac{a^{3}}{2}=\left(\frac{4 r}{\sqrt{3}}\right)^{3} / 2=6.16 r^{3}$
In case of FCC structure
No. of atom sper unit cell $=4$,

Latticeparameter,

Thus the volume per atom in th

$$
=5.66 \mathrm{r}^{3}
$$

$$
=\frac{566 r^{3}-6.16 r^{3}}{6.16 r^{3}}
$$

Thes, thus contracts when the transformation occurs.
15. $0.344,3502 \cdot 47$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

The effective number of atoms in diamond cubic unit cell $=$ corner atoms + face centered atom + atoms completely within the unit cell

$$
=\frac{1}{8} \times 8+\frac{1}{2} \times 6+1 \times 4=8
$$

Volume of each spherical atom $\frac{4}{3}=\cdot \pi r^{3}=4 / 3 \pi\left(\frac{\mathrm{a} \sqrt{3}}{8}\right)^{3}$
where, $\mathrm{r}=$ radius of the at $\mathrm{m} ; \mathrm{a}=$ lattiœ parameter.

16. $2 \cdot 38$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Given data :

$$
\begin{aligned}
& \mathrm{C}_{0}=0.20 \mathrm{wt} \% \mathrm{C} ; \quad \mathrm{C}_{\mathrm{s}}=0.90 \mathrm{wt} \% \mathrm{C} \text {; } \\
& \mathrm{C}_{\mathrm{x}}=0.40 \mathrm{wt} \% \mathrm{C} ; \quad \mathrm{x} \quad=0.50 \mathrm{~mm} \text {; } \\
& \Rightarrow \quad \mathrm{x} \quad=5 \times 10^{-4} \mathrm{~m} ; \quad \mathrm{D} \quad=1.28 \times 10^{-11} \mathrm{~m}^{2} / \text {; } \\
& \text { erf }(Z) \quad=0.7143 \\
& \mathrm{Z} \quad=0.755 \\
& \text { We know that } \frac{C_{x}-C_{0}}{C_{s}-C_{0}}=1-\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right) \\
& \Rightarrow \quad \frac{0.40-0.20}{0.90-0.20}=1-\operatorname{erf}\left(\frac{5 \times 10^{-4}}{2 \sqrt{1.28 \times 1)}}\right) \\
& \Rightarrow \quad 0.2857=1-\operatorname{erf}\left[\frac{5 \times 10_{4}}{2 \sqrt{1.28 \times 10^{*} \times t}}\right] \\
& \Rightarrow \quad 0.7114=\operatorname{erf}\left[\begin{array}{c}
5 \times 0^{-4} \\
\sqrt{1.28 \times 10^{* * *}} \times \mathrm{t}
\end{array}\right]
\end{aligned}
$$

Now accordingeo the preblen

5×10^{-4}
$\Rightarrow \quad \mathrm{t}=8.3 \mathrm{sk} .96 \mathrm{sec} . \quad \therefore \quad \mathrm{t}=2.38 \mathrm{hrs}$.
17.
(142)

In this problem the axial units are a: b:c $:: 0.424: 1: 0.367$
(i) $\mathrm{m}_{1} \mathrm{a}=0.212$ or $\mathrm{m}_{1} \times 0.424=0.212$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\therefore \quad m_{1}=\frac{0.212}{0.424}=\frac{1}{2}
$$

Similarly

$$
\mathrm{m}_{2} \mathrm{~b}=1 \text { or } \mathrm{m}_{2} \times 1=1=\mathrm{m}_{2}=1
$$

Also

$$
\mathrm{m}_{3} \mathrm{c}=0.183 \text { or } \mathrm{m}_{3} \times 0.367=0.183
$$

$$
m_{3}=\frac{0.183}{0.367}=\frac{1}{2}
$$

Hence numerical; parameters of the planes are $\frac{1}{2}, 1, \frac{1}{2}$.

$$
\text { Miller indices }=\left(\frac{1}{1 / 2}: \frac{1}{1}: \frac{1}{1 / 2}\right)=(212) .
$$

18. (121)

In this case, numerical parameters of this plane are 2,

$$
\therefore \quad \text { Miller indices }=\left(\frac{1}{2} \cdot 1: \frac{3}{2}\right. \text { 线 (121). }
$$

19. $69.61 \& 30.39$
 resin.

T ak the for*ang assumption : the density of the fibres is $51.48 \mathrm{mg} / \mathrm{m}^{3}$ and that of the epoxy resin $1.2 \mathrm{Fg} / \mathrm{m}^{3}$

Now, mass of fibres $=\rho_{f} v_{f}$

$$
=1.48 \times 0.65=0.962 \mathrm{mg}
$$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& \text { Mass of epoxy resin }=\rho_{\mathrm{r}} \mathrm{v}_{\mathrm{r}} \\
&=1.2 \times 0.35=0.42 \mathrm{mg} \\
& \mathrm{Wt} \% \text { fibres }=\frac{0.962}{0.962+0.42} \times 100 \%=69.61 \% \\
& \text { Wt \% epoxy resin }=\frac{0.42}{0.962+0.42} \times 100 \%=30.39 \%
\end{aligned}
$$

20. 277.5

Also, given that,

$$
\mathrm{E}_{\mathrm{f}}=400 \mathrm{GPa} ; \mathrm{E}_{\mathrm{r}}=50 \mathrm{GPa}
$$

We knowthat,
Young's method of composite

$$
\begin{aligned}
\mathrm{E}_{\mathrm{c}} & =\mathrm{E}_{\mathrm{f}} \mathrm{v}_{\mathrm{f}}+\mathrm{E}_{\mathrm{r}} \mathrm{v}_{\mathrm{r}} \\
& =400 \times 0.65+50 \times 0 \text {. }=277.5 \mathrm{GRa}
\end{aligned}
$$

21. $\quad 9.317 \times 10^{-3}$

Given data;
$d_{f}=20 \mathrm{~mm}$;
$\mathrm{s}_{\mathrm{c}}=14 \mathrm{Ma} ; \mathrm{E}_{\mathrm{f}}=7200 \mathrm{MPa} ; \quad \mathrm{E}_{\mathrm{n}}=2800 \mathrm{MPa}$.

Now

Vofraction of the nylon, $\mathrm{V}_{\mathrm{n}}=1-0.45=0.55$

Cross sectional area of glass fiber, $\mathrm{A}_{\mathrm{f}}=\frac{\pi}{4} \times(20 \mu)^{2} \mathrm{~m}^{2}$,

Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\mathrm{A}_{\mathrm{f}}=3.14 \times 10^{-10} \mathrm{~m}^{2}
$$

The ratio of fibre load to the nylon load,

$$
\frac{F_{f}}{F_{n}}=\frac{7000 \times 0.45}{2800 \times 0.55}=20.45 \quad \therefore F_{f}=20.45 \mathrm{~F}_{\mathrm{n}} .
$$

$\%$ load carried by the glass fibre $=\frac{20 \cdot 45}{20 \cdot 45+1}=95 \cdot 34 \%$

We also know that, $\mathrm{A}_{\mathrm{f}}=\mathrm{V}_{\mathrm{f}} \mathrm{A}_{\mathrm{c}}$

$$
3.14 \times 10^{-10}=0.45 \times \mathrm{A}_{\mathrm{c}} \quad \therefore \quad \mathrm{~A}_{\mathrm{c}}=6.98 \times 10^{-10} \mathrm{~m}^{2}
$$

And,

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{n}} \mathrm{~A}_{\mathrm{c}} \\
& A_{n}=0.55 \times 6.98 \times 10^{-10} \\
& \mathrm{~A}_{\mathrm{n}}=3.84 \times 10^{-10} \mathrm{~m}^{2} \\
& \therefore \quad \mathrm{~F}_{\mathrm{c}}=\mathrm{A}_{\mathrm{c}} \cdot \mathrm{~s}_{\mathrm{c}} \\
& \mathrm{~F}_{\mathrm{c}}=6.98 \times 1 \mathrm{~N}: 10 \times 1 \times 1{ }^{6}=9.772 \times 10^{-3} \mathrm{~N} \\
& \text { Since } \\
& \mathrm{F} \mathrm{c}=\mathrm{F}_{\mathrm{f}}+\hat{2} \\
& =0.45 \mathrm{~F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}} \\
& 9.772 \times 10^{-3}=21.45 \mathrm{~F}_{\mathrm{n}} \\
& \therefore \quad \mathrm{~F}_{\mathrm{n}}=4.556 \times 10^{-4} \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \mathrm{F}_{\mathrm{f}}=20.45 \times \mathrm{F}_{\mathrm{n}}=20.45 \times 4.556 \times 10^{-4} \\
& \mathrm{~F}_{\mathrm{f}}=9.317 \times 10^{-3} \mathrm{~N}
\end{aligned}
$$

22. 29.65
\therefore The amount of stress in glass is

$$
\begin{aligned}
& \sigma_{f}=\frac{F_{f}}{A_{f}}=\frac{9.31 \times 10^{-3}}{3.14 \times 10^{-10}} \\
& \therefore \quad \sigma_{f}=2.964968 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}=29.65 \mathrm{MPa}
\end{aligned}
$$

1. 50 mm

$$
\begin{aligned}
\underline{\mathrm{R}}=\Sigma \underline{\mathrm{F}} & =250 \underline{\mathrm{i}}-250 \underline{\mathrm{i}}-900 \underline{\mathrm{j}} \mathrm{~N} \\
& =-900 \underline{\mathrm{j}} \mathrm{~N}
\end{aligned}
$$

$$
\underline{M}_{c}=-(250 \times 180)+900 \times \times \text { \# }
$$

$$
(=0 \text { for } \mathrm{C} \text { to be the } \mathrm{arar} \text { center })
$$

$$
\left.\Rightarrow \quad \mathrm{x}=\frac{250 \times 180}{900 \times N}=\frac{50 \mathrm{~min}}{2}\right\rangle
$$

2. $\quad 36 \mathrm{~kg}$

Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

The common interior angle $\mathrm{BAC}=\mathrm{DCE}=\mathrm{EFD}=\mathrm{CDB}$ is $\alpha=\tan ^{-1}(\mathrm{~A})=45^{\circ}$.

Note $\cos \alpha=\sin \alpha=\frac{1}{\sqrt{2}}$. Denote the axial force in a member joining two points I, K by IK.

Joint F:

$$
\sum_{y} F_{y}=-\frac{D F}{\sqrt{2}}-W=0
$$

frown whichof

$$
=-\sqrt{2} W(C)
$$

$\sum F_{x}=-E F-\frac{D F}{\sqrt{2}}=0$,
from which $\mathrm{EF} \quad=\mathrm{W}(\mathrm{T})$.
Joint E:

Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\sum F_{x}=-\frac{C E}{\sqrt{2}}+E F=0
$$

from which CE $=\sqrt{2} W(T)$.

$$
\sum F_{y}=-E D-\frac{C E}{\sqrt{2}}=0
$$

from which ED

$$
=-\mathrm{W}(\mathrm{C}) .
$$

Joint D:

$$
\sum F_{Y}=E D+\frac{D F}{\sqrt{2}}-\frac{B D}{\sqrt{2}}=0
$$

from which BD

$$
=-2 \sqrt{2} W(C)
$$

$$
\sum F_{X}=\frac{D F}{\sqrt{2}}-\frac{B D}{\sqrt{2}}-C D=0
$$

from which $\mathrm{CD}=\mathrm{W}(\mathrm{T})$

Joint C:

$$
\sum F_{x}=-\frac{A C}{\sqrt{2}}+\frac{C E}{\sqrt{2}}+C D=0
$$

frofinkisichシ A

$$
2 \sqrt{2} W(T)
$$

$$
\sum F_{y}=-\frac{A C}{\sqrt{2}}+\frac{C E}{\sqrt{2}}-B C=0
$$

from with BC

$$
=-W(C)
$$

Joint B:

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\sum F_{x}=-A B+\frac{B D}{\sqrt{2}}=0
$$

from which $\mathrm{AB}=-2 \mathrm{~W}(\mathrm{C})$

This completesthe determination of the axial forces in all nine members. The max\&muntensile force occurs in member AC, $\mathrm{AC}=2 \sqrt{2} W(T)$, from which the safe load is $\nRightarrow \frac{4}{2 \sqrt{2}}=\sqrt{2}=\frac{1}{2} 1.414$ kN . The maximum compression occurs in member $\mathrm{BD}, \mathrm{BD}=-2 \sqrt{2} W$, C$)$, frem which the

$$
m=\frac{353.6}{9.81}=36.0 \mathrm{~kg}
$$

3. $1 / 4$

Minimum force with which body will just move $=\mu_{\mathrm{s}} \mathrm{m} 8$

After the body start moving Frictiongl fork obecomes $\mu_{\mathrm{k}}^{2} \mathrm{mg}$

So $\mathrm{ma}=\mu_{\mathrm{s}} \mathrm{mg}-\mu_{\mathrm{k}} \mathrm{mg}$
or $\mathrm{a}=\mathrm{g} / 4$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Again

$$
v_{1}^{2}-u_{0}^{2}=2 a \frac{\ell}{2}
$$

$$
\text { or } \quad \mathrm{v}_{1}=10 \mathrm{~m} / \mathrm{sec}
$$

The times t_{1} and t_{2} to cover distance $A B$ and $B C$ are given by :

$$
\begin{aligned}
& t_{1}=\frac{v_{1}-v_{0}}{a}=\frac{10-5}{a}=\frac{5}{a} \\
& t_{2}=\frac{v_{2}-v_{1}}{a}=\frac{15-10}{a}=\frac{5}{a} \\
\therefore & \text { Required ratio }=\frac{t_{1}}{t_{2}}=1 \cdot \frac{1}{2}
\end{aligned}
$$

5. 0.94

Given: $\mathrm{m}_{\text {box }} 1=2.0 \mathrm{~kg} ; \mathrm{m}_{\text {box }} \leqslant=5.0 \mathrm{~kg} ; \mathrm{d}_{\text {box }} 1=1.2 \mathrm{~m} ; \mathrm{t}_{\text {box }} 1=0.50 \mathrm{~s} ; \mathrm{d}_{\text {box }}$
$2=0.90 \mathrm{~m}, \mathrm{t}_{\text {box }} 2=4$ Let $2-\mathrm{kg}$ boxme referred to as Box 1 and the $5-\mathrm{kg}$ box will be referredto as box 2.)

The two beys ath intutat at rest. Thetotal system momentum is initially 0 . After the cutting of the string \%nd thympuike of the spring, the total system momentum must also be 0 . Thus, Box 1 's bat ward tiomentum must be equal to the Box 2 's forward momentum. The distance and time for Box must be sed to determine its velocity.
$\mathrm{v}=\mathrm{m}(1.2 \mathrm{~m}) /(0.5 \mathrm{~s})=2.4 \mathrm{~m} / \mathrm{s}$
Now the principle of momentum conservation can be used to determine Box 2'svelocity.
$\mathrm{m}_{\text {box }} 1 \cdot \mathrm{v}_{\text {box }} 1=\mathrm{m}_{\text {box }} 2 \cdot \mathrm{v}_{\text {box }} 2$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
$(2 \mathrm{~kg}) \cdot(2.4 \mathrm{~m} / \mathrm{s})=(5 \mathrm{~kg}) \cdot \mathrm{v}_{\text {box }} 2$
$\mathrm{v}_{\text {box }} 2=(2 \mathrm{~kg}) \cdot(2.4 \mathrm{~m} / \mathrm{s}) /(5 \mathrm{~kg})=096 \mathrm{~m} / \mathrm{s}$
The velocity of Box 2 can be used to determinethe time it takes it to move a distancegf 0.90 meters.
$\mathrm{v}_{\text {box }} 2=\mathrm{d}_{\text {box }} 2 /$ time
Time $=d_{\text {box }} 2 / v_{\text {box }} 2=(0.90 \mathrm{~m}) /(0.96 \mathrm{~m} / \mathrm{s})=0.9375 \mathrm{~s}=\sim 0.94 \mathrm{~s}$.
6. 11
$\Delta=\frac{4 \mathrm{PL}}{\pi E D_{1} D_{2}}$

Actually

$$
\Delta_{1}=\frac{4 P L}{\pi\left(2 D^{2}\right) E}=\frac{2 P L}{\pi D^{2} E}
$$

Avg. diameterof bar

\therefore Erras $\left(1-\frac{\Delta_{1}}{\Delta_{2}}\right) \times 100$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
=\left(1-\frac{2}{2.25}\right) \times 100=11 \%
$$

7.(A) When one of the principal stress at a point is large in comparison to the other the situation resembles axial tension test. Therefore, all theories give nearly same result.
8.(D) Poisson's ratio $=\frac{\text { Lateral strain }}{\text { Longitudual strain }}$ $\frac{\text { Lateral strain }}{4 \times \text { Longitudual strain }}=0.25$ $G=\frac{E}{2(1+\mu)}=\frac{2 \times 10^{5}}{2(1+0.25)}=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
9. 52.44
$\frac{1}{\mathrm{~K}_{\mathrm{s}}}=\frac{1}{\mathrm{~K}_{1}}+\frac{1}{\mathrm{~K}_{2}}=\frac{1}{1}+\frac{1}{3}=\frac{4}{33} \mathrm{~N} / \mathrm{N} / \mathrm{N}$
combined stiffness

$$
=\mathrm{K}_{\mathrm{s}}=\mathrm{K}_{3}
$$

10.(A) W ह stive assume a horizontal force component P and a vertical force component Q at pin C so as to permit us to use Castigliano's theorem for the horizontal and vertical displacement componentsthere. Our first step is then to determine the stain energy of the system from the 1-kip load at D, the 2-kip

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
load at B, and the loads P and Q at C. By the method of joints, for the forces in the members of the truss we have (equilibrium)
$\mathrm{AB}=\mathrm{P}-2(1+\mathrm{Q})$ tension
$\mathrm{DE}=1+\mathrm{Q}$ tension
$\mathrm{BC}=\mathrm{P}-\mathrm{Q}$ tension
$\mathrm{DB}=\mathrm{Q}$ compression
$C D=\frac{Q}{.707}$ tension
$E B=\frac{2+Q}{.707}$ tension

We now determine U in the following way (constitutive law):

$$
\mathrm{U}=\sum_{\mathrm{i}} \frac{\mathrm{~F}_{\mathrm{i}}^{2} \mathrm{~L}_{\mathrm{i}}}{2 \mathrm{~A}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}}
$$

(b)

Taking A_{i} and E_{i} as having the same value for eachinember, weege

$$
\begin{align*}
& \mathrm{U}=\frac{1}{2 \mathrm{AE}}\left\{[\mathrm{P}-2(1+\mathrm{Q})](10)+(P-Q)^{2}(10)+\left(\frac{\mathrm{Q}}{.707}\right)^{2}\left(\frac{10}{.707}\right)\right. \\
& \left.+(1+\mathrm{Q})^{2}(10)+\mathrm{Q}(\mathrm{Q} 0)+\left(\frac{2+\mathrm{Q}}{27}\right)^{2}\left(\frac{10}{.707}\right)\right\} \tag{c}
\end{align*}
$$

We may now comput 0 horizontal and vertical components of pin C by first taking partial

$$
\begin{align*}
& \Delta_{\text {in }}=\left(\frac{\text { s. }}{\partial P}\right)_{P=Q=0}=\frac{1}{2 A E}[2(P-2-2 Q)(10)+2(P-Q) 10]_{P}=Q=0 \\
& =\frac{1}{2 A E}[(2)(-2)(10)]=-\frac{20}{A E} f t \tag{d}
\end{align*}
$$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Clearly, the horizontal deflection component of the pin is opposite in sense to the direction of the force P shown in Fig. Now we get Δ_{V}. Thus,

$$
\begin{align*}
& \Delta_{\mathrm{V}}=\left(\frac{\partial \mathrm{U}}{\partial \mathrm{Q}}\right)_{\mathrm{P}=\mathrm{Q}=0}=\frac{1}{2 \mathrm{AE}}[2(\mathrm{P}-2-2 \mathrm{Q})(10)(-2)+2(\mathrm{P}-\mathrm{Q})(\mathrm{AQ})(-1) \\
& \left.+\frac{2 \mathrm{Q}}{(.707)^{2}}\left(\frac{10}{.707}\right)+2(1+\mathrm{Q})(10)+20 \mathrm{Q}+\frac{2(2+\mathrm{Q})}{(.707)^{2}} \frac{10}{70}\right) \\
& \therefore \Delta_{\mathrm{V}}=\frac{1}{2 \mathrm{AE}}(80+20+113.2) \frac{106.6}{\mathrm{AL}} \mathrm{ft} \tag{e}
\end{align*}
$$

The deflection at pin Ccan then be given as

$$
\begin{equation*}
\Delta_{\mathrm{c}}=\frac{1}{\mathrm{AE}}(-2 \mathrm{i}-106.6 \mathrm{it} \tag{f}
\end{equation*}
$$

11. $1 / 2$

Pure shearing train of magnitus
$=\gamma_{\mathrm{xy}}$ radians
\therefore Maximumatyeipal stain

12 , 3 . 0.0440
It wotikn firt seem that we have a stalically indeterminate support system here, but this is not the case. We can take $\overline{\mathrm{AB}}$ as free body with the bending moment zero at the pin at B and solve for the supporting foree at A. Thus observing Fig.,

Figure. Free body of AB.
$\sum \mathrm{M}_{\mathrm{B}}=0:$

$$
-\mathrm{R}_{\mathrm{A}}(\mathrm{C})+(180)(\mathrm{C})\left(\frac{3}{2}\right)=0
$$

$\therefore \mathrm{R}_{\mathrm{A}}=270 \mathrm{~N}$
We can now proceed with the deflection 亩ye analysis
$0 \leq x<3:$

$$
\frac{d^{2} v}{d x^{2}}=\frac{1}{E l}\left[270(x)-180\left(\frac{x^{2}}{2}\right)\right]
$$

$$
\frac{d v}{d x}=\frac{1}{E l}\left[270\left(\frac{x^{2}}{2}\right)-180\left(\frac{x^{3}}{6}\right)+C_{1}\right]
$$

$$
\begin{equation*}
\mathrm{v}=\frac{1}{E I}\left[270\left(\frac{x^{3}}{6}\right)-180\left(\frac{x^{4}}{24}\right)+C_{1} x+C_{2}\right] \tag{b}
\end{equation*}
$$

$3<x<9:$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{align*}
& \frac{d^{2} v}{d x^{2}}=\frac{1}{E l}\left[270(x)-180\left(\frac{x^{2}}{2}\right)\right] \\
& \frac{d v}{d x}=\frac{1}{E l}\left[270\left(\frac{x^{2}}{2}\right)-180\left(\frac{x^{3}}{6}\right)+C_{3}\right] \tag{c}\\
& v=\frac{1}{E l}\left[270\left(\frac{x^{3}}{6}\right)-180\left(\frac{x^{4}}{24}\right)+C_{3} x+C_{4}\right]
\end{align*}
$$

You will note that except for the constants of integration thgex lection equatidik are identical for this simple problem for both domains.

Boundary conditions:

1. When $x=0, v=0$.

$$
\therefore \mathrm{C}_{2}=0
$$

2. When $x=9, d v / d x=0$

$$
270\left(\frac{9^{2}}{2}\right)-100\left(\frac{9^{3}}{6}\right)+C_{3}=0
$$

特 $\mathrm{C}_{3}=1.094 \times 10^{4}$
$3 . \mathrm{Wh}_{2} \mathrm{x}=$ 悯 $\mathrm{v}=0$

$$
\begin{gathered}
270\left(\frac{9^{3}}{6}\right)-180\left(\frac{9^{4}}{24}\right)+\left(1.094 \times 10^{4}\right)(9)+C_{4}=0 \\
\therefore C_{4}=-8.206 \times 10^{4}
\end{gathered}
$$

Patch condition:

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& {[\mathrm{v}(\mathrm{C})] } \\
& \mathrm{Eq} \cdot(\mathrm{~b})=[\mathrm{v}(\mathrm{C})] \\
& \therefore \mathrm{C}_{1}(\mathrm{Cq})+(\mathrm{d}) \\
& \mathrm{C}_{2}=\mathrm{C}_{3}(\mathrm{C})+\mathrm{C}_{4}
\end{aligned}
$$

Noting that $\mathrm{C}_{2}=0, \mathrm{C}_{3}=1.094 \times 10^{4}$, and $\mathrm{C}_{4}=-8.206 \times 10^{4}$, we can solve forthe remaining unknown constant C_{1}. That is,

$$
\begin{aligned}
3 \mathrm{C}_{1}+0 & =(\mathrm{C})\left(1.094 \times 10^{4}\right)-8.206 \times 10^{4} \\
\therefore \mathrm{C}_{1} & =-1.641 \times 10^{4}
\end{aligned}
$$

We now look for zero slopes of v in the two domains. Thus for the left domajif we have

$$
\begin{equation*}
\frac{d v}{d x}=0=\frac{1}{E I}\left(270 \frac{x^{2}}{2}-180 \frac{x^{3}}{6}-104 \times 10^{4,}\right) \tag{e}
\end{equation*}
$$

We find as a real root forthis equation/

Clearly, we discard this resul苓coming as does outside the domain of Eq. (e). Look next at the remaining domain.

$$
\frac{d v}{d x}=\frac{1}{5}\left[270\left(\frac{x^{2}}{2}\right)-180\left(\frac{x^{3}}{6}\right)+1.094 \times 10^{4}\right]
$$

We getas the nly zereglope position,

$$
\mathrm{x}=9.00 \mathrm{~m}
$$

Ihais carresponds to the base of the cantilever and represents the trivial condition of a minimum deflection of zero.

We should check the pin. Thus, from Eq. (b) we have

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
\mathrm{v}(\mathrm{C}) & =\frac{1}{\mathrm{El}}\left[270\left(\frac{3^{3}}{6}\right)-180\left(\frac{3^{4}}{24}\right)-\left(1.641 \times 10^{4}\right)(3)\right] \\
& =-\frac{4.862 \times 10^{4}}{\mathrm{El}} \mathrm{~m}
\end{aligned}
$$

It should now be clearthat the maximum deflection must occur at the pin.
The value of EI is next computed.

$$
\begin{aligned}
& \text { EI }=\left(2 \times 10^{11}\right)\left[\left(\frac{1}{12}\right)(.075)(.1)^{3}-\left(\frac{1}{\sqrt{2}}\right)(040)(.06)^{3}\right)^{3}{ }^{\text {多 }} \\
& =1.106 \times 10^{6} \mathrm{~N}-\mathrm{m}^{2}
\end{aligned}
$$

The maximum deflection then is

$$
\mathrm{v}(3)=-\frac{4.862 \times 10^{4}}{106 \% 0^{6}}=0440 \mathrm{~m}
$$

13. 32.0

We need to calculate forces acting on the be aje sonverting the distributed load to an equivalent concentrated load:

Find the reack

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\mathrm{R}_{\mathrm{A}}=27.6 \mathrm{kN}
$$

Find the reacting moment at A :

$$
\begin{aligned}
\sum \mathrm{M}_{\mathrm{A}} & =\mathrm{M}_{\mathrm{a}}-23.0 \times 1.15-4.6 \times 2.3 \\
& =0 \\
\mathrm{M}_{\mathrm{a}} & =37.03 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

 loads are distributed, so the shear force diagram is linear and the b wing mizent fill be quadratic.

Section right of A

Section left of B
 the positive direction. Then:

$$
\mathrm{M}=-37.03 \mathrm{kN} \cdot \mathrm{~m}
$$

No repen萢e procedure for a section immediately left of B:

$$
\begin{aligned}
\sum \mathrm{F}_{\mathrm{y}} & =27.6-23-\mathrm{V}=0 \\
\mathrm{~V} & =4.6 \mathrm{kN} \\
\sum \mathrm{M}_{\text {section }} & =\mathrm{M}+37.03+23 \times 1.15-27.6 \times 2.3=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}=27.6 \mathrm{kN}
\end{aligned}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\mathrm{M}=0
$$

The bending moment diagram is a quadratic that passesthrough $(0,-37.03)$ and $(2.3,0)$.
One method is to integrate the equation of the shear force diagram. The load along the beam between A and B is uniformly distributed so the shear force diagram is a straight line betwefin ($0,27.6$) and (4, 4.6).

The slope of this line is given by:

$$
\mathrm{m}=\frac{\mathrm{y}_{1}-\mathrm{y}_{0}}{\mathrm{x}_{1}-\mathrm{x}_{0}}=\frac{4.6-27.6}{4-0}
$$

The equation of the line is $\mathrm{y}=\mathrm{mx}+\mathrm{c}=-10 \mathrm{x}+\mathrm{c}$ and it asses through $(0, \%$ 多.6). Solving for c , the curve becomes $y=-10 x+27.6$. The equation of the bendiazammediagram is the integral of this line:

$$
\int(-10 x+27.6) d x
$$

$\mathrm{M}(\mathrm{x})$ /

$$
=-5 x^{2}+27.6 x+c
$$ $=-5 x^{2}+27.6 x+c$

Now sketch the shear force andending monent diagrams:

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

The depth of the beam is $\mathrm{d}=30 / \mathrm{mm}$ and thation
$\times 10^{-6} \mathrm{~m} 4=177 \times 10^{6} \mathrm{~mm}^{4}$. Wiaximum st es occurs at the top or at the bottom of the beam, where
 Bending stress is give
14.

15. 0.5

Shear stress developed at a point proportional to its centre from centre of shaft.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

At distance r, shear stress $=\frac{\tau}{2 r} \cdot r=\frac{\tau}{2}=0.5 \tau$
16. 1.25

Stiffness of spring $R=\frac{G d^{4}}{8 D^{3} n}$

$$
\begin{gathered}
R_{1}=\frac{c}{25} \\
R_{2}=\frac{c}{20} \\
\frac{R_{2}}{R_{1}}=\frac{c}{20} \times \frac{25}{c}=1.25
\end{gathered}
$$

17.(A) \& 18.(C)

$l^{2}=\mathrm{s}_{\mathrm{A}}^{2}+\mathrm{s}_{\mathrm{B}}^{2}-2 \mathrm{~s}_{\mathrm{A}} \mathrm{s}_{\mathrm{B}} \cos 150$

given: $\mathrm{v}_{\mathrm{A}}=0.4 \mathrm{~m} / \mathrm{s} \rightarrow \mathrm{v}_{\mathrm{B}}=-0.4 \mathrm{~m}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{equation*}
\text { diff: } 0=v_{A}^{2}+s_{A} a_{A}+v_{B}^{2}+s_{B} a_{B}-\cos 150\left(s_{A} a_{B}+s_{B} a_{A}+2 v_{A} v_{B}\right) \tag{A}
\end{equation*}
$$

$0=0.04287+0.4829 \mathrm{a}_{\mathrm{A}}+0.4829 \mathrm{a}_{\mathrm{B}}$

Kinetics:
$\left[\sum \mathrm{F}=\mathrm{ma}\right]$
$40-\mathrm{T} \cos 15=2 \mathrm{a}_{\mathrm{A}}$ and $-\mathrm{T} \cos 15=3 \mathrm{a}_{\mathrm{B}}$ into (A)
$\mathrm{a}_{\mathrm{A}}=7.95 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{a}_{\mathrm{B}}=-8.04 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~T}=25.0 \mathrm{~N}$

ไgure. Free-body diagram of cantilever beam.

$0 \leq x<5$

$$
\frac{d^{2} v}{d x^{2}}=\frac{1}{E l}\left(R_{1} x-\frac{10 x^{2}}{2}\right)
$$

(a)

$$
\begin{equation*}
\frac{d^{2} v}{d x^{2}}=\frac{1}{E l}\left(R_{1} x-10 \frac{x^{2}}{2}+100\right) \tag{b}
\end{equation*}
$$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Integratingtwice, for the spans we get
$0 \leq x<5$

$$
\begin{aligned}
& \frac{d v}{d x}=\frac{1}{E l}\left(R_{1} \frac{x^{2}}{2}-\frac{10 x^{3}}{6}+C_{1}\right) \\
& v=\frac{1}{E l}\left(R_{1} \frac{x^{3}}{6}-\frac{10 x^{4}}{24}+C_{1} x+C_{2}\right)
\end{aligned}
$$

$5<x<10:$

$$
\begin{align*}
& \frac{d v}{d x}=\frac{1}{E l}\left(R_{1} \frac{x^{2}}{2}-\frac{10 x^{3}}{6}+100 x+C_{3}\right. \\
& v=\frac{1}{E l}\left(R_{1} \frac{x^{3}}{6}-\frac{10 x^{4}}{24}+00 \frac{x^{4}}{2}+C_{3} x+C_{4}\right) \tag{f}
\end{align*}
$$

(c)

(e)

We have four constants of integation plus theanknefwn R_{1} to be determined. We can notethat

$$
\begin{aligned}
& \text { 滕 } \mathrm{X}=0, \quad{ }^{2} \quad \mathrm{v}=0 \\
& \text { at } x=L \text {, } \\
& \frac{d v}{d x}=v=0
\end{aligned}
$$

Applyingstase condition in we have
$\mathrm{C}_{2}=0$
$\frac{R_{1}(10)^{2}}{2}+\frac{(10)(10)^{3}}{6}-(100)(10)=-50 \mathrm{R}_{1}+667$
$\mathrm{C}_{4}=-\frac{\mathrm{R}_{1}(10)^{3}}{6}+\frac{(10)\left(10^{4}\right)}{24}-(100) \frac{\left(10^{2}\right)}{2}-\left(-50 \mathrm{R}_{1}+667\right)(10)(\mathrm{i})$
(g)

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Websit e: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
=333 R_{1}-7.51 \times 10^{3}
$$

Next we apply the patch conditions (compatibility) at $x=5$. Thus

$$
\begin{gathered}
{\left[\frac{\mathrm{dv}\left(5^{-}\right)}{\mathrm{dx}}\right]_{\mathrm{Eq} .(\mathrm{cc}}=\left[\frac{\mathrm{dv}\left(5^{+}\right)}{\mathrm{dx}}\right]_{\mathrm{Eq} .(\mathrm{e})}} \\
\mathrm{R}_{1}\left(\frac{5^{2}}{2}\right)-10 \frac{\left(5^{3}\right)}{6}+\mathrm{C}_{1}=\mathrm{R}_{1}\left(\frac{5^{2}}{2}\right)-10 \frac{\left(5^{3}\right)}{6}+(100)(5)+\mathrm{C}_{3}
\end{gathered}
$$

$$
\therefore \mathrm{C}_{1}=500+\mathrm{C}_{3}
$$

(j)

Also,

$$
\begin{gathered}
{\left[\mathrm{v}\left(5^{-}\right)\right]_{\mathrm{Eq} .(\mathrm{d})}=\left[\mathrm{v}\left(5^{+}\right)\right]_{\mathrm{Eq} \cdot(\mathrm{f})}} \\
\mathrm{R}_{1}\left(\frac{5^{3}}{6}\right)-\frac{(10)\left(5^{4}\right)}{24}+\mathrm{C}_{1}(5)=\mathrm{R}_{1}\left(5^{3}\right)-\frac{(10)\left(5^{4}\right)}{224}+100 \frac{\left(5^{2}\right)}{2}+\mathrm{C}_{3}(5)+\mathrm{C}_{4} \\
\therefore 5 \mathrm{C}_{1}
\end{gathered}
$$

Replacing C_{3} and C 放脊ing Eqs. (h) and (i) in Eqs. (j) and (k), we get the following simultaneous equations for C_{1} and R_{1}

$$
\begin{aligned}
& \mathrm{C}_{1}=1167-50 \mathrm{R}_{1} \\
& 5 \mathrm{C}_{1}=83 \mathrm{R}_{1}-2.92 \times 10^{3}
\end{aligned}
$$

Qesyin for R_{1}, we get

$$
\mathrm{R}_{1}=26.3 \mathrm{kN}
$$

The other supporting forces are now readily available from rigid-body

Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
mechanics. Thus,
$\sum F_{y}=0:$

$$
\mathrm{R}_{1}-(10)(10)+\mathrm{R}_{2}=0
$$

$\therefore \mathrm{R}_{2}=73.7 \mathrm{kN}$
$\sum \mathrm{M}_{0}=0:$
$-(100)(5)-100+\mathrm{R}_{2}(10)-\mathrm{M}_{2}=0$
$\therefore \mathrm{M}_{2}=137 \mathrm{kN}$ m
We have acoordingly determined both the leflection equatiop and the supporting forces simultaneously.
21.(B) (a) $\mathrm{M}_{\mathrm{o}}=\mathrm{Fd}=1001 \mathrm{~b} \times \underbrace{24 \cos 60^{\circ}}$

$$
=1200 \mathrm{lb} \text { in (clock wiseg }
$$

Altematively

$$
\underline{M}_{0}=\underline{r} \times \underline{F}
$$

$$
\underline{r}=12 \underline{i}+1 / 2 \sqrt{3} j
$$

$$
\mathrm{E}=\hat{2} 00 \mathrm{~V}
$$

$\Rightarrow M_{0}=3200 \mathrm{k}$ lbin

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

22.(B)
(b) $\mathrm{d}_{1}=24 \sin 60^{\circ}$
$=\sqrt[12]{3}=20.8$ in
$\mathrm{Fd}_{1}=\mathrm{M}_{\mathrm{o}}$
$\Rightarrow \mathrm{f}=\frac{\mathrm{M}_{0}}{\mathrm{~d}_{\mathrm{n}}}=57.7 \mathrm{lb}$

E: THERMO DYNAMICS

1.(B) (i) Vessalimisfix voluthe, hence $\Delta V=0$. No work is done, $W=0$.

$\mathrm{W} \stackrel{\%^{\circ}}{\mathrm{P}} \mathrm{ext}^{. \Delta \mathrm{V}}$

Also

$$
\Delta \mathrm{V}=\mathrm{V}_{\text {final }} \simeq \mathrm{V}_{\text {initial }} \mathrm{V}_{\text {final }}
$$

$$
\left(\because \mathrm{V}_{\text {initial }}=0\right)
$$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．
$\therefore \quad \Delta \mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}_{\mathrm{ext}}}$
or

$$
W=-P_{\mathrm{ext}} \cdot \frac{\mathrm{nRT}}{\mathrm{P}_{\mathrm{ext}}}=-\mathrm{nRT}
$$

where n is the number of mole of H_{2} gas obtained from n mole of $\mathrm{Fe}(\mathrm{s})$ ．

1 mole

$$
\begin{array}{ll}
\therefore & \mathrm{n}=\frac{50}{56}=0.8929 \text { mole } \\
\therefore & \mathrm{W}=-0.8929 \times 8.314 \times 298
\end{array}
$$

$$
=-2212.22 \mathrm{~J}
$$

$$
W_{A B}=\frac{1}{2} B C \times A C+K \times L C
$$

1 mole

$$
=3 \times 10^{-3} \mathrm{~m}^{3}
$$

$\mathrm{AC},-2=2 \mathrm{Nm}^{-2}$
$\mathrm{LC}=2-0=2 \mathrm{Nm}^{-2}$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{AB}}=+ \text { area ABKLA } \\
& =\text { area of } 4 \text { 会会C }+ \text { area of rectangle BCLK }
\end{aligned}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& \therefore \quad W_{A B}=\frac{1}{2} \times 3 \times 10^{-3} \times 2+3 \times 10^{-3} \times 2 \\
& W_{A B}=9 \times 10^{-3} \mathrm{~J}
\end{aligned}
$$

(ii) Work done during the process from B to C (Compression) is

$$
\begin{aligned}
\mathrm{W}_{\mathrm{BC}} & =- \text { area BCLK } \\
& =-\mathrm{KL} \times \mathrm{LC} \\
& =-3 \times 10^{-3} \times 2 \\
& =-6 \times 10^{-3} \mathrm{~J}
\end{aligned}
$$

 process, therefore, $\mathrm{W}_{\mathrm{CA}}=0$

Net work done in the complete cycle

$$
\begin{aligned}
& \mathrm{W}=\mathrm{W}_{\mathrm{AB}}+\mathrm{W}_{\mathrm{BC}}+\mathrm{W}_{\mathrm{CA}} \\
= & 9 \times 10^{-3}+\left(-6+10^{-3}\right)+0 \\
= & 3 \times 10^{-3} \mathrm{~J} \quad \text {, }
\end{aligned}
$$

3.(A) Total heat suffack

Lês be tik Sistance moved then
the wrk done given by $=\mathrm{Fs}$
$\mathrm{Fs}=\mathrm{a}=0$

$$
\begin{aligned}
s & =560 / \mathrm{F} \\
& =560 / 102 * 10
\end{aligned}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\mathrm{s}=.54 \mathrm{~m}
$$

4.(D) If the temperature increases, then the internal energy, which depends on temperature, will certainly rise. But adding heat to a system need not result in an increase in bulk energy of the system. For example, consider a pot of water sitting on a hot-plate. If we take the water as our sysk heat is being adde do the system, but since the pot is not moving, its potential ankineticemergy are not changing.

Since the boundary of the system is not moving, there is no work being doik oo for the stem.
5.(D)

$$
\begin{aligned}
\dot{m} & =\rho \dot{V} \\
\sum_{\text {Inlas }} \dot{m}_{\text {in }} & =\sum_{\text {Outlets }} \dot{m}_{\text {out }} \\
\rho \dot{V}_{1} & =\rho \dot{V}_{2} \\
\dot{V}_{1} & =\dot{V}_{2} \\
A_{1} \vec{V}_{1} & =A_{2} \vec{V}_{2} \\
\vec{V}_{2} & =\frac{A_{1}}{A_{2}} \vec{V}_{1}=\frac{\pi D_{1}^{2} / 4}{\pi D_{2}^{2} / 4} \vec{V}_{1} \\
\vec{V}_{2} & =\left(\frac{D_{1}}{D_{2}}\right)^{2} \vec{V}_{1}=\left(\frac{2 D}{2}\right)^{2} \\
\vec{V}_{2} & =4 \vec{V}_{1}
\end{aligned}
$$

6.(C)

$\int\left(\frac{\delta Q_{\text {net }}}{T}\right)_{\text {in }}+\int\left(\frac{\delta Q_{\text {net }}}{T}\right)_{\text {out }} \leq 0$
$\left(\frac{Q_{\text {in }}}{T_{\text {in }}}\right)+\left(-\frac{Q_{\text {out }}}{T_{\text {out }}}\right) \leq 0$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{gathered}
\left(\frac{3150 \mathrm{~kJ}}{(440+273) \mathrm{K}}\right)+\left(\frac{-1294.46 \mathrm{~kJ}}{(20+273) \mathrm{K}}\right) \leq 0 \\
(4.418-4.418) \frac{\mathrm{kJ}}{\mathrm{~K}}=0
\end{gathered}
$$

The Clausius inequality is satisfied here. Since the cyclic integral is equal ${ }^{6}$ zero, the cycle 苶made of reversible processes.

$$
\begin{gathered}
W_{\text {net }}=Q_{\text {in }}-Q_{\text {out }}=(3150-1294.46) \mathrm{kJ}=1855.4 \mathrm{~kJ} \\
\eta_{\text {th }}=\frac{W_{\text {net }}}{Q_{\text {in }}}=\frac{1855.54 \mathrm{~kJ}}{3150 \mathrm{~kJ}}=0.589 \quad \text { or }
\end{gathered}
$$

7.(D) As state 2s (Fig.) the quality and pressure are known.

$$
\begin{aligned}
& \mathrm{s}_{\hat{2}}=\mathrm{s}_{\mathrm{t}} F_{2} \mathrm{~s}_{\mathrm{fg}}=0.5926+0.85(8.2287-0.5926) \\
& \mathrm{N}_{\mathrm{k}} 7.0833 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& \mathrm{~s}_{1}=7.0833 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

At state, I the temperature and entropy are thus known. At $360^{0} \mathrm{C}, \mathrm{s}_{\mathrm{g}}=5.0526 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, which is less than s_{1}. So from the table of superheated steam, at $t_{1}=360^{\circ} \mathrm{C}$ and $\mathrm{s}_{1}=7.0833 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, the pressure is found to be 16.832 bar (intepolation).
\therefore The greatest allowable steam pressure is :
$\mathrm{p}_{1}=16.831$ bar
$\mathrm{h}_{1}=3165.54 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{2 \mathrm{~s}}=173.88+0.85 \times 2403.1=221652 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=173.88 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{4 \mathrm{~s}}-\mathrm{h}_{3}=0.001 \times(16.83-0.08) \times 100=1.675 \mathrm{k} \mathrm{J}_{\mathrm{K}}^{\mathrm{s}, \mathrm{k}}$
$\mathrm{h}_{4 \mathrm{~s}}=175.56 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{Q}_{1}=\mathrm{h}_{1}-\mathrm{h}_{4 \mathrm{~s}}=3165.54-175.56$ *2990 (1) 1 kg
$\mathrm{W}_{\mathrm{T}}=\mathrm{h}_{1}-\mathrm{h}_{2 \mathrm{~s}}=3165.54-1$ 銥 $56=2990 \mathrm{~kJ} / \mathrm{k}$
$\mathrm{W}_{\mathrm{P}}=1.675 \mathrm{~kJ} / \mathrm{kg}$

$$
\eta_{\text {ccil }}=\frac{W / 2-\frac{94}{2.32}}{2990} 0.3168 \text { or } 31.68 \%
$$

Mean teaymer inure of heat addition.

$$
\begin{aligned}
& T_{\mathrm{m}_{1}}=\frac{\mathrm{h}_{1}-h_{4 \mathrm{~s}}}{\mathrm{~s}_{1}-\mathrm{s}_{4 \mathrm{~s}}}=\frac{2990}{7.0833-0.5926} \\
& =460.66 \mathrm{~K}=187.51^{\circ} \mathrm{C} .
\end{aligned}
$$

8. 75

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Onli ne St udent Portal: examprep.vpmda sses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

The efficiency of a heat engine is the ratio of the work done per cycle W to the heat absorbed from the high-temperature reservoir Q_{h}.

The percentage of the heat of combustion (heat absorbed from the high temperat ure reservoir) is the ratio of Q_{c} to Q_{h}. We can use the relationship between $\mathrm{W}, \mathrm{Q}_{\mathrm{h}}$, and $\mathrm{Q}_{\mathrm{c}}\left(\mathrm{W}=\mathrm{Q}_{\mathrm{h}}-\mathrm{Q}_{\mathrm{c}}\right.$. fofind $\mathrm{Q}_{\mathrm{c}} / \mathrm{Q}_{\mathrm{h}}$. Use the definition of efficiency and the relationship between W, Q_{h}, and Q_{c} to intain:

$$
\varepsilon=\frac{W}{Q_{\mathrm{t}}}=\frac{Q_{\mathrm{b}}-Q_{\mathrm{c}}}{Q_{\mathrm{t}}}=1-\frac{Q_{\mathrm{c}}}{Q_{\mathrm{t}}}
$$

Solving for $\mathrm{Qc} / \mathrm{Qh}$ y ields:

$$
\frac{Q_{\mathrm{c}}}{Q_{\mathrm{b}}}=1-\varepsilon
$$

$$
\frac{Q_{\mathrm{c}}}{Q_{\mathrm{h}}}=1-0.25=0.75
$$

9.(C) The $T-s$ diagram of the ideal Bry involved in the Brayton cycle§re steady-flow 在evices. The air temperatures at the compressor and turbine exits are determined fronisentropic /elations:

Process 1-2 (isentropiosespression of an ideal gas):

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614,9001894073 , 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{gathered}
T_{1}=300 \mathrm{~K} \rightarrow h_{1}=300.19 \mathrm{~kJ} / \mathrm{kg} \\
P_{r 1}=1.386 \\
P_{r 2}=\frac{P_{2}}{P_{1}} P_{r 1}=(8)(1.386)=11.09
\end{gathered}
$$

$$
\mathrm{T}_{2}=540 \mathrm{~K}
$$

Process 3-4 (isentropic expansion of an ideal gas):

$$
\begin{gathered}
T_{3}=1300 \mathrm{~K} \rightarrow h_{3}=1395.97 \mathrm{~kJ} / \mathrm{kg} \\
P_{r 3}=330.9 \\
P_{r 4}=\frac{P_{4}}{P_{3}} P_{r 3}=\left(\frac{1}{8}\right)(330.9)=41.36
\end{gathered}
$$

$$
\mathrm{T}_{4}=770 \mathrm{~K}
$$

10.(D)

$\because \mathrm{H}^{0}$ of free elements $=0$ $\mathrm{H}_{\mathrm{O}_{2}}^{0}=0$
$\because \Delta \mathrm{H}_{\mathrm{f}}^{0}=\mathrm{H}^{0}$, i.e., st titarat heat of formation = standard heat ent halpy of a compound

Also $\mathrm{H}_{\mathrm{f}}^{0} \mathrm{f} \mathrm{F}_{2} \mathrm{O}+\mathrm{ve} ; \Delta \mathrm{H}_{\mathrm{f}}^{0}$ for $\mathrm{H}_{2} \mathrm{O}$ is -ve, because heats of combustion are exothermic.
$\Delta \mathrm{H}=[2 \times(\% 70)]+0-[20+(-250)]=-310 \mathrm{~kJ}$
Now, $\Delta \mathrm{H}^{0}=\Delta \mathrm{E}^{0}+\Delta \mathrm{nRT}$
$\because \quad \Delta \mathrm{H}_{\mathrm{R}}^{0}=-310 \times 10^{3} \mathrm{~J} ; \quad \Delta \mathrm{n}=3-2=1$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\mathrm{R}=8.314 \mathrm{~J} ; \quad \mathrm{T}=298 \mathrm{~K}
$$

$$
\therefore \quad-310 \times 10^{3}=\Delta \mathrm{E}^{0}+1 \times 8.314 \times 298
$$

$$
\therefore \quad \Delta \mathrm{E}^{0}=-312477.5 \text { joule }
$$

$$
\therefore \quad \Delta \mathrm{E}^{0}=-3124775 \mathrm{~kJ}
$$

The fluid is air (Fig.)

$$
Q=\Delta u+W=C v \Delta T+\frac{p_{2} v_{2}-p_{1} v_{1}}{1-n}
$$

$$
=\left(c_{v}+\frac{R}{1-n}\right)\left(T_{2}-T_{1}\right)
$$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

$$
\begin{aligned}
& v_{2}=v_{2}\left(\frac{P_{1}}{P_{2}}\right) \frac{R T_{1}}{P_{1}}\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1}{n}}=\frac{0.287 \times 473}{10 \% Q \%)^{1 / 1.15}} \\
& u_{2}=0.13575 \times 7.406=1.005 \text { 法 }_{3} 3 . \mathrm{kg} \\
& \frac{P_{1} v_{1}}{T_{1}}=\frac{P_{1} v_{2}}{T} \\
& \therefore \% \frac{1}{2}=43 \times \frac{1}{10} \times \frac{1.0054}{0.13575}=350.306 \mathrm{~K}=77.3^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(0.716+\frac{0.287}{-0.15}\right)(350.306-473) \\
& =(-1.195)(-123.306)=147.35 \mathrm{~kJ}
\end{aligned}
$$

12. 125

We can find the entropy change of the universe from the entropy changes of the high- an舜 lowtemperature reservoirs. The maximum amount of the 500 J of heat that coifd be onvert into work can be found from the maximum efficiency of an engine operating bet then tho resefors.

$$
\Delta S_{\mathrm{u}}=\Delta S_{\mathrm{h}}+\Delta S_{\mathrm{c}}=-\frac{Q}{T_{\mathrm{h}}}+\frac{Q}{T_{\mathrm{c}}}=-Q\left(\frac{1}{T_{\mathrm{h}}}-\frac{1}{T_{\mathrm{c}}}\right)
$$

Substitute numerical values and evaluate $\Delta \mathrm{S}_{\mathrm{u}}$:

$$
\Delta \boldsymbol{S}_{\mathrm{u}}=(-500 \mathrm{~J})\left(\frac{1}{400 \mathrm{~K}}-\frac{1}{300 \mathrm{~K}}\right)
$$

$$
=0.42 \mathrm{~J} / \mathrm{K}
$$

Relate the heat that coitehave been converted into work to the maximum efficiency of an engine

Tfor maxivism efficiency of an engine operating between the two reservoir temperatures is the effic

$$
\varepsilon_{\max }=\varepsilon_{\mathrm{C}}=1-\frac{T_{\mathrm{c}}}{T_{\mathrm{h}}}
$$

Substitute for $\varepsilon_{\text {max }}$ to obtain:

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
W=\left(1-\frac{T_{\mathrm{c}}}{T_{\mathrm{h}}}\right) Q_{\mathrm{h}}
$$

Substitute numerical values and evaluate W:

$$
\boldsymbol{W}=\left(1-\frac{300 \mathrm{~K}}{400 \mathrm{~K}}\right)(500 \mathrm{~J})
$$

$$
=125 \mathrm{~J}
$$

13.(B) Area under $A B$
$=(0.4-0.2) \times 50 \times 10^{5} \mathrm{~J}$
$=10^{6} \mathrm{~J}=1 \mathrm{MJ}$
Area under BC

$=\frac{p_{1} V_{1}-p_{1} V_{2}}{n /{ }_{2}+}=$

$=$ 格251M4
Tota work $=$ 2
14. 208%

Here, mass of water, $\mathrm{m}=1 \mathrm{~g}$
$\therefore \quad$ Initial volume of water, $\mathrm{V}_{1}=1 \mathrm{~cm}^{3}$

Toll Free: 1800-2000-092
Website: www.vpmdasses.com
Mobile: 9001297111, $9829619614,9001894073,9829567114$
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

$$
\text { Volume of steam, } \mathrm{V}_{2}=1671 \mathrm{~cm}^{3}
$$

$\therefore \quad$ Change in volume， $\mathrm{dV}=\mathrm{V}_{2}-\mathrm{V}_{1}=1671-1=1670 \mathrm{~cm}^{3}=1670 \times 10^{-6} \mathrm{~m}^{3}$

Standard atmospheric pressure，
$\mathrm{P}=1.013 \times 10^{5} \mathrm{Nm}^{-2}$
As change of sate is involved，

$$
\therefore \quad \mathrm{dQ}=\mathrm{mL}=1 \times 540 \times 4.18 \mathrm{~J}=2257 \mathrm{~J}
$$

Change in internal energy， $\mathrm{dU}=$ ？
$\mathrm{dW}=\mathrm{PdV}=1.013 \times 10^{5} \times 1670 \times 10^{-6}=169.17 \mathrm{~J}$
From

$$
\begin{aligned}
& \mathrm{dQ}=\mathrm{dU}+\mathrm{dW} \\
& \mathrm{dU}=\mathrm{dQ}-\mathrm{dW}=2257-169.17 \\
& \mathrm{dU}=2087.83 \mathrm{~J}
\end{aligned}
$$

15．0．369，342
Firstly we calculate the mass of 漛 in the tir

$$
\mathrm{PV}=\mathrm{mR} \mathrm{~T} \Rightarrow \mathrm{~m}=\left[\frac{\mathrm{PV}}{\mathrm{R} T}\right]=\frac{310[\mathrm{kPa}] 0.1\left[\mathrm{~m}^{3}\right]}{0.287[\mathrm{~kJ} / \mathrm{kg} \mathrm{~K}] 293[\mathrm{~K}]}
$$

Thosempexare in the tire increases to $50^{\circ} \mathrm{C}(323 \mathrm{~K})$ ，however the volume and mass of air in the tire rema黍 const 多，thus：

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{mRT} \Rightarrow \mathrm{~m}=\left[\frac{\mathrm{PV}}{\mathrm{RT}}\right] \\
& {\left[\frac{\mathrm{P}_{\mathrm{L}}}{\mathrm{~T}_{\mathrm{L}}}\right]=\left[\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}\right] \Rightarrow \mathrm{F}_{3}=\mathrm{F}_{1}\left[\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right]=310 \mathrm{kPa}\left[\frac{323 \mathrm{~K}}{293 \mathrm{~K}}\right]=342 \mathrm{kPa}}
\end{aligned}
$$

Toll Free：1800－2000－092
Mobile： $9001297111,9829619614,9001894073,9829567114$
Website：www．vpmdasses．com
FREE Onli ne St udent Portal：examprep．vpmda sses．com
E－Mail：vpmclasses＠yahoo．com／info＠vpmclasses．com

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
P_{2, \text { gage }}=342 \mathrm{kPa}
$$

16. 276.7

Here, initial temperature,
$\mathrm{T}_{1}=27^{\circ} \mathrm{C}=273+27=300 \mathrm{~K}$
final temperature, $\mathrm{T}_{2}=97^{\circ} \mathrm{C}=273+97=370 \mathrm{~K}$
When a gas is compressed adiabatically, work done on the gas is giyen by
$\mathrm{W}=\frac{\mathrm{R}}{(1-\gamma)}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=\frac{8.3 \times(370-300)}{1-1.5}$
or

$$
\mathrm{W}=-11.62 \times 10^{2} \mathrm{~J}
$$

\therefore Heat produced,
$\mathrm{H}=\frac{\mathrm{W}}{\mathrm{J}}=\frac{11.62 \times 10^{2}}{4.2}=276$
17. 60

Because this is a cons, $\Delta \mathrm{H}=\mathrm{q}_{\mathrm{P}}=60 \mathrm{~kJ}$.
$\Delta \mathrm{U}=\Delta \mathrm{H} . \mathrm{P} \Delta \Delta=\Delta \mathrm{H}+\mathrm{V}$
18. 35

$$
\Delta \mathrm{U}=60 \mathrm{~kJ}-2 \mathrm{k} \mathrm{~J}=35 \mathrm{~kJ} .
$$

19. 0.14**235

We need to first evaluate the specific volume v_{2}, which can then be compared tothe saturation values v_{f} and v_{g} at the pressure of 100 kPa .

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

Thus $\mathrm{v}_{2}=\mathrm{V} / \mathrm{m}=0.4\left[\mathrm{~m}^{3}\right] / 2[\mathrm{~kg}]=0.2\left[\mathrm{~m}^{3} / \mathrm{kg}\right]$

$$
Q_{\text {tulity }} \mathrm{K}_{2}=\left[\frac{\psi_{2}-v_{f}}{\psi_{g}-v_{f}}\right]_{1 \mathrm{DClPPa}}=\left[\frac{0.2-0.001}{1.694-0.001}\right]=0.118
$$

mass of water vapor at state 2 ：

$$
\mathrm{x}=\mathrm{mg} / \mathrm{m} \quad \Rightarrow \quad \text { 良漈 }=\mathrm{xm}=.118(2 \mathrm{~kg})=0.235 \mathrm{~kg}
$$

20． 129

 kg whickis much less than the specific volume v_{3} of $0.2 \mathrm{~m}^{3} / \mathrm{kg}$ ，thus placing state（C）well into the superated rebign．Thus the two intensive properties which we use to determine the pressure at state （C）童济 $3=300^{\circ} \mathrm{C}$ ，and $\mathrm{v}_{3}=0.2 \mathrm{~m}^{3} / \mathrm{kg}$ ．On scanning the superheat tables we find that the closest values lie somewhere between 1.2 MPa and 1.4 MPa ，thus we use linear interpolation techniques to determine the actual pressure P_{3} as shown below：

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Superheat Wapor Thbles at $300^{\circ} \mathrm{C}$

7	02139	$\mathrm{Y}=02$	01323
P	m / Mg		
	12	$\mathrm{~F}_{3} 7$	14
MPa			

$$
\begin{aligned}
& \frac{P_{3}-1.2}{1.4-1.2}=\frac{0.2-0.2139}{0.1823-0.2139}=0.440 \\
& \quad \Rightarrow \underline{\mathbb{B}_{3}}=1.29 \mathrm{MPa}
\end{aligned}
$$

21. 0.658
$\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{mRT}_{1}$
$R=\frac{300 \times 0.07}{0.25(273 \times 80)}=0.238 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
Final temperature

$$
\mathrm{T}_{2}=\frac{\mathrm{p}_{2} \mathrm{~V}_{2}}{\mathrm{mR}}=\frac{300 \times 0.1}{0.25 \times 0.238}=505 \mathrm{~K}
$$

Now

$$
\begin{aligned}
& \mathrm{Q}=\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)+\mathrm{W}=\left(\mathrm{T}_{2}-\mathrm{T}_{1}+\mathrm{W}\right. \\
& 0=0.25 \mathrm{c}_{\mathrm{v}}(505-353)-25 \\
& \mathrm{c}_{\mathrm{v}}=\frac{25}{0.25 \times 152}-0.658 \mathrm{kJtg} \mathrm{~K}
\end{aligned}
$$

22. 0.896

$$
c_{p}=0.658+0.238=0.896 \mathrm{~kJ} / \mathrm{kgK}
$$

F: POLYMER SCIENCEAND ENGINEERING

1.(A) Cyanoacrylate

Other/examples of die hardness

- Cyanoacrylate

- Acrylic resin lacquer
- Polystyrene solution
\rightarrow Die-hardners \rightarrow do not increase the actual hardness of die stone but only increasffitabrasion resistance

Gypsum disadvantage is the relatively poor resistance to abrasion.
Volatile relief agents and nail polish are die spacers.
2.(A) \rightarrow Answer should have been as ormocers are organically modified*erymis:
\rightarrow Its an acronym for organically modified ceramic
\rightarrow Composed of a polymer of multifunctional urethane and thioether, goxy silianes.
The silicanes provide for rigid 3 dimensional structuve, whilemethacrylate group are available for photochemical polymerization.
\rightarrow Supplied as a tube and cured by finht cuisg
Filler Particle size
Filler weight
Filler volume

1-15 $\mu \mathrm{m}$
61%
\rightarrow COTE is ch levethat of \rightarrow less thermal expansion is seen
Otherfindifísf ion of ereramics and composites Smart compositions \rightarrow Composed of pate of Barium
Afuminuì) ©r Foride silicates glass-fillers $(1 \mu \mathrm{~m})$ with $\mathrm{YbF}_{3}, \mathrm{SiO}_{2}$ and alkaline Casio ${ }_{4}$ glass in
dime hacrylatifirnomers \rightarrow introduced by Arostion in 1998 k Fluoride releasing other composites
(eres. than GIC more than other composites) - releases Ca^{++}and OH^{-}ions also
\rightarrow Ceromers \rightarrow Ceramic Optimized polymers-ntroduced by IV Oclar \rightarrow Composition; Barium glass, spheriodal mixed oxide ytterium trifluride and silicon dioxide in imethylacry late monomers (BisGMA and UDEMA).

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 90018940 73, 9829567114
Website: www.vpmdasses.com
FREE Online Student Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
3.(D) Fiber reinforced composite.

Materials used for prosthesis

1. Acrylic copolymer
2. Polyvinyl chloride
3. Chlorinated polyethylene
4. Polyrethone elathomare
5.Silicones
5. Polyphosphozires
4.(C) 0.2 to 0.5%

5.(A) Polycrylic acid

Exp. Composition proter

Liquid
Polycrylic acid

- ZnO - Bulk ingredient
- MgO - Modifier Itaconic acid
- Biomuth/Al oxideImproves smoothness of the mix Maleic acid
- SnF_{2} - Anticariogenic Tricarboxyllic acid
6.(D) Free\%ikical lymeization is a method of polymerization by which a polymer forms by the sutizessive kikition of free radical building blocks. Emulsion polymerization is a type of radical polyinerizatio筑解t usually starts with an emulsion incorporating water, monomer, and surfact ant. 1 Wemat common type of emulsion polymerization is an oil-in-water emulsion, in which droplets of monomer (the oil) are emulsified (with surfactants) in a continuous phase of water. Emulsion polymerization permits simultaneous increase in rate of polymerization and polymer weight.

Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

7．（B）A reinforced polymer composite is made by the incorporation of fibers into the polymer．The composite produced from these types of materials are low density，low cost，comparable specific properties，and most importantly they are environmental friendly．Its advantages over traditional construction materials are its high tensile strengh to weight ratio，ability to be moldedinto various shapes，and potential resist ance to environmental conditions，resulting in potential low maintenance
 properties make FRP composite a good alternative for innovative constru\＆g．

8．（A）Natural rubber is used extensively in many applications and protucts，einer alofe or in
 resilience，and is extremely waterproof．Out of all the fastormers，natur多rubber has the

9．（A）Butyl rubber is a synthet ic rubber，a copolymer of elastomer，butyl rubber is impermeable to air and use in finumaplications requiring an airtight rubber．Polyisobutylene and butyl rubberyare used in the manufact ure of adhesives，agricultural chemicals，fiber optic compounds，balil biakders，caulks dind sealants，cling film，electrical fluids， lubricants（ 2 cycle engine oil），p／iper and pulpkersfal care products，pigment concentrates，for rubber and polymer modificati橉，for protectingஙnd sealing certain equipment for use in areas where chemical weapons are present，ask gasolinefdiesel fuel additive，and even in chewing gum．The first majorapplication of bivik rubber was tire innertubes．This remains an important segment of its market even today．

$=286,000 \mathrm{~g}$ 卦的

$D P=\frac{\text { molecular }_{-} \text {weight＿of } \quad \text { polymer }(\mathrm{g} / \mathrm{mol})}{\text { molecular＿weight＿of＿mer }(\mathrm{g} / \mathrm{mol} / \mathrm{mer})}=\frac{12,000 \mathrm{~g} / \mathrm{mol}}{226 \mathrm{~g} / \mathrm{mol} / \mathrm{mer}}=53 \mathrm{mers}$

12．（D）Raw rubber obtained from milky sap（latex）of the rubber tree does not possess the characteristics of the rubber with which we are familiar．In order to give \mathbf{i} strength and elasticity $\dot{\mathbf{t}}$ is vulcanized．In the vulcanization process，raw rubber is mixed with small amount of sulphur and heated．The sulphur reacts with the polymer molecules forming a cross－linked net work．

This cross－linking gives mechanical strength to the rubber．In addition，fillers such sarboa black and zinc oxide are usually added to the crude rubber before vulcanization ingrder to improve wearing characteristics．

13．（B）Teflon is used as a non－stick coating for pans and other cookware．f is very nowisactive，partly
 for react ive and corrosive chemicals．Where used as a lubr营ant， T eflon reduce friction，wear and
 interventions．

14．（C）Plasticizers or dispersants are additivesthat increase theplastisy or fluidity of a material．The dominant applications are for plastics，\＆ecially polyv ind chloride（PVC）．Plasticizers work by embedding themselves bet ween the 妇ainseselyme，spacingthem apart（increasing the＂free volume＂），andthus significant 1 lowering the $\begin{gathered}\text { 鉝c度 } \text { ransition temperat ure for the plastic and making }\end{gathered}$ it softer．For plastics such as P ，the more lasticizer added，the lower its cold flex temperat ure will be．This meansthat it ，be mork

15．（B）Bakelite

Bakelite is theimysiakigg olyiker．It becomes infusible on heating and can not be remoulded
16．（B）Resin芳：
Reshs are angorphous organic solids or semisolids which usually have atypical lustre and are often

17．（B）

$$
\frac{1.07 \times 10^{11} \mathrm{lb} \text { plastic }}{2.90 \times 10^{8} \text { people }}=370 \mathrm{lb} / \text { person in } 2003
$$

UGC NET，GATE，CSIR NET，IIT－JAM，IBPS，CSAT／IAS，SLET，CTET，TIFR，NIMCET，JEST ，JNU ，ISM etc ．

18．（C）

$\frac{370 \mathrm{lb} / \text { person }-330 \mathrm{lb} / \text { person }}{330 \mathrm{lb} / \text { person }} \times 100=12 \%$ change

19．（A）When two monomers of ethylene join，they release 228 kJ of energy in an ex othermic seaction．The heat released is therefore 114 kJ per monomer．With 1000 monomers joining，the 像at released will be $114,000 \mathrm{~kJ}$ or $1.14 \times 10^{5} \mathrm{~kJ}$ ．

20．（B）The reaction is so exothermic that，in the early days of polymer manufactur \＆polypinatizationessels
 vessels to avoid this．

21．（B）T wo equations：（A） $160=\mathrm{C}(12)^{\mathrm{m}}$ and（B） $300=\mathrm{C}(250)^{\mathrm{m}}$
（A） $\ln 160=\ln C+m \ln 12$ or $\ln 160-m \ln 12=\ln C$
（B） $\ln 300=\ln \mathrm{C}+\mathrm{m} \ln 250$ or $\ln 300-\mathrm{m} \ln 250=$ 鿖 C
（A）and（B）： $\ln 160-\mathrm{m} \ln 12=\ln 300-$ nit $\ln 250$
$5.0752-2.4849 \mathrm{~m}=5.7038-5.52 \mathrm{~K} \mathrm{~m}$
$(5.5215-2.4849) \mathrm{m}=5.7038$ 行． 0752
$3.0366 \mathrm{~m}=0.6286$
$\mathrm{m}=0.2$

G：FOOD PRESERVATIO N

1．（C）Pasteve anation or pasteurisation is a process of heating food，which is usually a liquid，to a specific temperat ure for a predefined length of time and then immediately cooling it after it is removed from the heat．

Mobile：9001297111， 9829619614,9001894073 ， 9829567114
Website：www．vpmdasses．com
FREE Online St udent Portal：examprep．vpmdasses．com
E－Mail：vpmclasses＠yahoo．com／info＠vpmclasses．com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
2.(B) Clostridium perfingens poison is an enterotoxin produced during sporulation. Clostridium is a genus of Gram-positive bacteria, belonging to the Firmicutes. They are obligate anaerobes capable of producingendospores. Individual cells are rod-shaped, which gives them their name, from the Greek kloster or spindle. These characteristics traditionally defined the genus; however many species originally classified as Clostridium have been reclassified in other genera.
3.(D) T emperature is not an intrinsic fact or in food spoilage.

Intrinsic factor of food spoilage are:

1. Moisture Content.
2.Ph adivity and acidity.
3.Nutrient content
4.Biological structure
2. Redox potential
3. Nat urally occurring and added antimiciabials
4. Competitive microflora
4.(C) The major function of carbohy効ates incluyde structural framework and storage. Carbohydrates are sugar that provide th calories and high in fibs
5.(C) Polysaccharídes ik wall units bâkd
6.(A) Tiky mầis clude the following:

苟•Abdminal pis

- Eitivanainless rectal bleeding or passing of blood in sool
- Fever
- Nausea

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

- Vomiting
- Irregular bowel movements, including constipation ordiarrhea
- Gas
- Bloating
7.(C) Dextrinization is the browning of starch goods when subjected to dry heat. Fh dry heat ing, th starch in the food goes through a chemical reaction. Churning cream to makebutikr, than proct involves dextrinisation.
8.(D) Fats consist of a wide group of compounds that are generally, oranic solvents and generally insoluble in water. Fats and oils have an importint function in foof preparation. They can contribute to the aeration of food products.
9.(D) Developing criteria forevaluation is a sage in the dimeprocestimed and Technology.

It involves creating a set of questions that focus on the fecificici ions found within the design brief.
10.(A) Government agencies are reponsibte setting soof standards, conducting inspedions,
 who do not comply with standeds.

 environment inwhich to growt
12.(B) 'Reverseamy nsis's a for in of membranetechnology that is used to produce some fruit juices.

Reyerse wiss (RO)is a water purification technology that uses a semipermeable membrane. This mentorane-t thnology is not properly a filtration method.
13.(A) 然 Serols (or phytosterols) are a naturally occurring part of all plants. They are mainly found in veget able oils but are also present in smaller amounts in nuts, legumes, grains, cereals, wood pulp and leaves. Plant terols are a functional ingredient or naturally occurring plant molecules that are very similarto cholesterol.
14.(C) Test for jelly : Put a plate in the freezer. When you think the jam or jelly is nearly ready, drip a few drops onto the cold plate and let cool, then push the smudge with your finger. If it wrinkles when you push it, your jam or jelly is ready. If you push it with your finger and it looks like you're parting a mini Red Sea but there are no wrinkles, cook afew minutes longer and try again.
15.(A) Aseptic processing is the process by which a serile (aseptic) product ypically food or pharmaceutical) is packaged in a sterile container in a way that maintains sterility. Bag- - -Box
 handle prior to being filled. Other common package types are drinkbres andi/uches
 calculate the moisture content of the sample. The operati響 principle bhind $\%$ ven drying is that the weight lost represents the loss of water.
 defective complexes would be $8 \times 10^{3} \times 10^{-5}$, i.e., eig of ever 100 complexes are defective.

 required for the final assembly ${ }^{2}$. Thus, the three-step process pityuced abot 1,000 times fewer defective complexes than the single-

19.(A) Trypsin hydrolyses pe tide at the carboxyl side of lysine and arginine residues. The resulting

 DNT-Ala, 翏P-Gly, and DNP-Ser. Note that the ε-amino group of lysine can also read with FDNB; howe ger, the $\%$ derivative of lysine can be distinguished from the α-DNP derivative by its cian*)

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
21.(A) It is important to convert all units to a consistent set. Here, it is most convenient to use the mol L^{-1} scale. Thus, the molar concentrations are $[\mathrm{A}]=\mathrm{c}_{\mathrm{A}} / \mathrm{M}$ and $\left[\mathrm{A}_{2}\right]=\mathrm{C}_{\mathrm{A}_{2}} / 2 \mathrm{M}$, where c_{A} and $\mathrm{C}_{\mathrm{A}_{2}}$ are the concentrations in $g L^{-1}$ of A and A_{2} respectively, and M is the molar weight of A.

Now, the totalconcentration of A is

$$
\mathrm{c}_{\mathrm{T}}=\mathrm{c}_{\mathrm{A}}+\mathrm{C}_{\mathrm{A}_{2}}
$$

Hence

$$
\mathrm{C}_{\mathrm{A}_{2}}=\mathrm{c}_{\mathrm{T}}-\mathrm{c}_{\mathrm{A}}
$$

By substituting in Equation $\mathrm{K}_{2}=\left[\mathrm{A}_{2}\right] /[\mathrm{A}]^{2}$, we get

$$
K=\frac{\left[A_{2}\right]}{[A]^{2}}=\frac{\left(c_{T}-c_{A}\right) / 2 M}{\left(c_{A} / M\right)^{2}}
$$

 meaningless, and the other postive. The positive root i大 given by

$$
\mathrm{c}_{\mathrm{A}}=0.13 \mathrm{~g} \mathrm{~L}^{-1}
$$

Therefore, the kent age by

$$
\begin{aligned}
\mathrm{c}_{\mathrm{A}}= & \frac{-1+\left[1+\left(8 \times 10^{6} \times 10\right) /\left(4 \times 10^{4}\right)\right]^{1 / 2}}{4 \times 10^{6} / 4 \times 10^{4}} \mathrm{~g} \mathrm{~L}^{-1} \\
& \frac{-1+(2,001)^{1 / 2}}{100}=\mathrm{g} \mathrm{~L}^{-1}=0.437 \mathrm{~g} \mathrm{~L}^{-1}
\end{aligned}
$$

This represents only 4.4 percent of the total at this new concentration, and thus the percentage by weight of the dimer is 95.6 percent.

