

GATE - ELECTRONICS \& COMMUNICATION MOCK TEST PAPER
 - There are a total of 65 questions carrying 100 marks.

- Questions (1-25) will carry 1-mark each and questions (26-55) will carry 2-marks each.
- Questions (56-65) belongs to general aptitude (GA). Questions (56-60) will carry 1-mark each, and question (61-65) will carry 2-marks each
- For Q. 1-25 and Q.56-60 1/3 mark will be deducted for each wrong answer.For Q.26-51 and Q. 61-65 2/3 mark will be deducted for each wrong answer. The question pairs (Q.52, Q.53) and (Q.54, Q.55) are linked questions. For Q. 52 \& 54 2/3 mark will be deducted. There is no negative marking for Q. 53 \& Q.55.
Q.48-51 are common data questions.

If first question is attempted wrongly then answer of second question will not be evaluated.

- Pattern of questions : MCQs \& Numerical

Total marks : 100
Duration of test : 3 Hours

VPM CIASSES

For IIT-JAM, JNU, GATE, NET, NIMCET and Other Entrance Exams
1-C-8, Sheela Chowdhary Road, Talwandi, Kota (Raj.) Tel No. 0744-2429614
Web Site www.vpmclasses.com E-mail-vpmclasses@yahoo.com

Toll Free: 1800-2000-092
Phone: 0744-2429714

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

1. If A is a non - singular matrix and the eigen values of A are $2,3,-3$ then the eigen values of A^{-1} are
(A) 2, 3, - 3
(B) $\frac{1}{2}, \frac{1}{3}, \frac{-1}{3}$
(C) $2|A|, 3|A|,-3|A|$
(D) None of these
2. If an error of 1% is made in measuring the major and minor axes of an ellipse, then the percentage error in the area is approximately equal to
(A) 1%
(B) 2%
(C) $\square \%$
(D) 4%
3. $\int \frac{d x}{e^{x}-1}$ is equal to
(A) $\log \left(e^{x}-1\right)$
(B)
(C) $\log \left(e^{-x}-1\right)$
(D)
$\log \left(1-e^{-x}\right)$
4. The input resistance R_{i} of the amplifier shown in the figure is

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

(A) $\frac{30}{4} \mathrm{k} \square$
(B) $10 \mathrm{k} \square$
(C) $40 \mathrm{k} \square$
(D) infinite
5. The first and the last critical frequency of an RC-driving point impedance function must respectively be
(A) a zero and a pole
(B) a zero and a zero
(C) a pole and a pole
(D) a pole and a zero
6. The amplifier network shown in fig is stable if

(A) $\mathrm{K}<3$
(B) $\mathrm{K} \geq 3$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
(C) $\mathrm{K} \leq \frac{1}{3}$
(D) $\mathrm{K} \geq \frac{1}{3}$
7. A can solve 90% of the problems given in a book and B can solve 70%. What is the probability that at least one of them will solve a problem, selected at random from the book?
(A) 0.16
(B) 0.63
(C) 0.97
(D) 0.20
8. An pn junction diode is operating in reverse bias region. The applied reverse voltage, at which the ideal reverse current reaches 90% of its reverse saturation current, is
(A)- 59.6 mV
(B) 2.7 mV
(C) 4.8 mV
(D) 42.3 m
9. Following are the value of a function

$$
y(x): y(-1)=5, y(0), y(1)=8
$$

$\frac{d y}{d x}$ at $x=0$ as per Newton's central difference scheme is \qquad .
10. In the network of Fig., all initial condition are zero. The damping exhibited by the network is

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

(A) Over damped
(B) Under damped
(C) Critically damped
(D) Value of voltage is required
11. For the circuit in fig., let cutting voltage $V_{\square}=0.7 \mathrm{~V}$. the Plot of u_{0} verses V_{i} for $-10 \leq u_{1}$ $\leq 10 \mathrm{~V}$ is

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: $9001297111,9829567114,9829597114,9001297243$
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

(B)

(C)
(C)

(D)
(D)
12. In the network shown in the figure, the effective resistance faced by the voltage source is

13. Consider the signed binary number $A=01010110$ and $B=11101100$ where B is the 1 's complement and MSB is the sign bit. In list-I operation is given, and in list-II resultant binary number is given.

List I	List-II
P. $A+B$	1.01000011
Q. $B A$	2.01101001
R. $A B$	3.01000010
S. $A B$	4.10010101
	6.1011100
	6.10010110
	7.10111101
	0.01101010

The correct match is

	P	Q	R	S
(A)	3	4	2	5

(B)	3	6	8
7			

(C) $\begin{array}{lll}1 & 4 & 8\end{array}$
(D) 106

5
14. When a unit impulse voltage is applied to an inductor of 1 H , the energy supplied by the source is

15. In silicon at $\mathrm{T}=300 \mathrm{~K}$ if the Fermi energy is 0.22 eV above the valence band energy, the value of p_{0} is

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 7

C L A SSES
(A) $2 \times 10^{15} \mathrm{~cm}^{-3}$
(B) $10^{15} \mathrm{~cm}^{-3}$
(C) $3 \times 10^{15} \mathrm{~cm}^{-3}$
(D) $4 \times 10^{15} \mathrm{~cm}^{-3}$
16. The voltage transfer ratio $\mathrm{V}_{2} / \mathrm{V}_{1}$ for the network shown in the figure is

17. Two discrete time systems S 1 and S 2 are connected in cascade to form a new system as shown in fig.

Consider the following statements
(a) If S_{1} and S_{2} are linear, then S is linear
(b) If S_{1} and S_{2} are nonlinear, then S is nonlinear
(c) If S_{1} and S_{2} are gausal, then S is causal
(d) If S_{1} and S_{2} are time invariant, then S is time invariant

True statements are :
(A) a, b, c
(B) $\mathrm{b}, \mathrm{c}, \mathrm{d}$

Toll Free: 1800-2000-092
Phone: 0744-2429714

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
(C) a, c, d
(D) All
18. The circuit shown in Fig-I is replaced by that in Fig-II. If current I remains the same, then R_{0} will be \qquad -.

19. The transfer function of a system is given as

$$
H(z)=\frac{2\left(z+\frac{1}{2}\right)}{\left(z+\frac{1}{2}\right)\left(z-\frac{1}{3}\right)}
$$

Consider the two statements
Statement(i) : System is causal and stable.
Statement(ij):Inverse system is causal and stable.
The correct option is
(A) (i) is true
(B) (ii) is true
(C) Both (i) and (ii) are true
(D) Both are false
20. The admittance parameter Y_{12} in the 2-port network in the given figure is \qquad .

21. Consider the systems shown in fig. If the forward path gain is reduced by 10% in each system, then the variation in C1 and C2 will be respectively

(A) 10\% and 1\%
(B) 2% and 10%
(C) 10% and 0%
(D) 5% and 1%
22. The closed loop transfer function of a system is
$T(s)=$

The number of poles in right half - plane and in left half - plane are
(A) 3,2
(B) 2,3
(C) 1,4
(D) 4,1

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
23. A system has a damping ratio of 1.25 , a natural frequency of $200 \mathrm{rad} / \mathrm{s}$ and DC gain of 1 .
(A) overdamped
(B) under damped
(C) critically damped
(D) None of the above
24. The 6 V zener diode shown in the figure, has zero zener resistance and a knee current of 5 mA . The minimum value of R so that the voltage across it does not fall below 6 V is
\qquad -.

25. The Nyquist plot of a system is shown in fig. The open-loop transfer function is

The no. of poles of closed loop system in RHP are

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
(A) 0
(B) 1
(C) 2
(D) 4
26. An n-channel JFET having a pinch-off voltage $\left(\mathrm{V}_{\mathrm{p}}\right)$ of -5 V shows a transconductance $\left(g_{m}\right)$ of $1 \mathrm{~mA} / \mathrm{V}$, when applied gate-to-source voltage $\left(\mathrm{V}_{\mathrm{Gs}}\right)$ is -3 V . Its maximum transconductance (in mA / V) will be \qquad .
27. What is the maximum average effective input noise temperature that an amplifier can have if its average standard noise figure does not exceed 1.7?
(A) 203 K
(B) 215 K
(C) 235 K
(D) 255 K
28. The aerial current of an AM transmitter is 18 A when unmodulated but increases to 20 A when modulated. The modulation index is
(A) 0.68
(B) 0.73
(C) 0.89
(D) None of the above
29. A super heterodyne receiver is designed to receive transmitted signals between 5 and 10 MHz . High-side tuning is to be used. The tuning range of the local oscillator for IF frequency 500 kHz would be
(A) $4.5 \mathrm{MHz}-9.5 \mathrm{MHz}$
(B) $5.5 \mathrm{MHz}-10.5 \mathrm{MHz}$
(C) $4.5 \mathrm{MHz}-10.5 \mathrm{MHz}$
(D) None of the above
30. In a PCM system, if the code word length is increased form 6 to 8 bits, the signal to quantization noise ratio improves by the factor.
(A) $8 / 6$
(B) 12
(C) 16
(D) 8
31. A vector field is given by
$E=4 z y^{2} y z+2 y \sin 2 x u_{y}+y^{2} \sin 2 x u_{z}$
The region in which $E=0$ is
(A) Plane $y=0$
(B) Plane $x=0$
(C) Plane $z=0$
(D) all
32. The grad $\nabla \times A$ of a vector field
$A=x 2 y u_{x}+y 2 z u_{y}-2 x z u_{z}$ is
(A) $2 x y+2 y z-2 x$
(B)

$$
x^{2} y+y^{2} z-2 x z
$$

(C) $2 x^{2} y+2 y^{2} z-2 x z$
(D) 0

Toll Free: 1800-2000-092
Phone: 0744-2429714

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 13
33. Consider the rectangular loop on $z=0$ plane shown in fig. the magnetic flux density is $B=$ $6 x u_{x}-9 y u_{y}+3 z u_{z} \mathrm{~Wb} / \mathrm{m}^{2}$. The total force experienced by the rectangular loop is

(A) $30 u_{z} \mathrm{~N}$
(B) $-30 u_{z} N$
(C) $36 u_{z} N$
(D) $-36 u_{z} N$
34. In a nonmagnetic medium
$E=5 \cos \left(10^{9} t-8 x\right) u_{x}+4 \sin \left(10^{9} t-8 x\right) u_{z} \quad v / m$.
The dielectric constant of the medium is
(A) 3.39
(B) 1.84
(C) 5.7
(D) 2.4
35. A rectangular waveguide is filled with a polyethylene ($\square_{r}=2.25$) and operates at 24 GHz .

The cutoff frequency of certain mode is 16 GHz . The intrinsic impedance of this mode is
(A) 2248
(B) $337.2 \square$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
E-Mail: vpmclasses@vahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 14

C L A S S E 5
(C) 421.4
(D) $632.2 \square$
36. The radiation resistance of an antenna is $63 \square$ and loss resistance $7 \square$. If antenna has power gain of 16 , then directivity is
(A) 48.26 dB
(B) 12.5 dB
(C) 38.96 dB
(D) 24.7 dB
37. The air filled cavity resonator has dimension $a=3 \mathrm{~cm}, b=2 \mathrm{~cm}, C=4 \mathrm{~cm}$. The resonant frequency for the TM_{110} mode is
(A) 5 GHz
(B) 6.4 GHz
(C) 16.2 GHz
(D) 9 GHz
38. A practical DC current source provide 20 kW to a $50 \square$ load and 20 kW to a $200 \square$ load. The maximum power, that can be drawn from it, is
(A) 22.5 kW
(B) 45 kW
(C) 30.3 kW
(D) 40 kW
39. The following results were obtained from measurements taken between the two terminal of a dissipated network

Terminal voltage	12 V	0 V
Terminal durrent	0 A	1.5 A

The Thevenin resistance of the network is
(A) $16 \square$
(B) $8 \square$
(C) 0
(D) ∞
40. The following fields exist in charge free regions
$P=60 \sin (\square t+10 x) u_{z}$
$Q=\frac{10}{\rho} \cos (\omega t-2 \rho) u \phi$
$R=3 \rho^{2} \cot \phi u_{\rho}=\frac{1}{\rho} \cos \phi u_{\phi}$
$S=\frac{1}{r} \sin \theta \sin (\omega t-6 r) u_{0}$
The possible electromagnetic fields are
(A) P,
(B) R, S
(C) $R R$
(D) Q,S
41. A signal is sampled at 8 kHz and is quantized using 8 bit uniform quantizer. Assuming $\operatorname{SNR}_{\mathrm{q}}$ for a sinusoidal signal, the correct statement for PCM signal with a bit rate of R is

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243

Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 16
(A) $R=32 \mathrm{kbps}, \mathrm{SNR}_{\mathrm{q}}=25.8 \mathrm{~dB}$
(B) $\mathrm{R}=64 \mathrm{kbps}, \mathrm{SNR}_{\mathrm{q}}=49.8 \mathrm{~dB}$
(C) $R=64 \mathrm{kbps}, \mathrm{SNR}_{\mathrm{q}}=55.8 \mathrm{~dB}$
(D) $R=32 \mathrm{kbps}, \mathrm{SNR}_{\mathrm{q}}=49.8 \mathrm{~dB}$
42. Consider a system shown in Figure. Let $X(f)$ and $Y(f)$ denote the Fourier transforms of $x(t)$ and $y(t)$ respectively. The ideal HPF has the cutoff frequency 10 kHz . The positive frequencies where $Y(f)$ has spectral peaks are

(A) 1 kHz and 24 kHz
(B) 2 kHz and 24 kHz
(C) 1 kHz and 14 kHz
(D) 2 kHz and 14 kHz
43. The effect of current shunt feedback in an amplifier is to
(A) increase the input resistance and decrease the output resistance.
(B) increase both input and output resistances.
(C) decrease both input and output resistances.
(D) decrease the input resistance and increase the output resistance.
44. The 100110_{2} is numerically equivalent to

1. 26_{16}
2. 36_{10}
3. 468
4. 2124

The correct answer are
(A) 1, 2, and 3
(B) 2, 3, and 4
(C) 1, 2, and 4
(D) 1, 3, and 4
45. The PMOS transistor in Fig.has parameters

$$
\mathrm{V}_{\mathrm{TP}}=-1.2 \mathrm{~V}, \frac{\mathrm{~W}}{\mathrm{~L}}=20 \text {, and } \mathrm{k}_{\mathrm{p}}^{\prime}=30 \mathrm{~mA} / \mathrm{y}^{2} .
$$

If $I_{D}=0.5 \mathrm{~mA}$ and $V_{D}=-3 V$., then value of R_{S} and R_{D} are
(A) $4 \mathrm{k}, 5.8 \mathrm{k} \square$
(B) $4 \mathrm{k}, 5 \mathrm{k}$
(C) $5.8 \mathrm{k} \square 4 \mathrm{k} \square$
(D) $5 \mathrm{k} \square, 4 \mathrm{k} \square$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 18
46. Expand the given function in Taylor's series.
$f(z)=\frac{z-1}{z+1}$ about $z=1$
(A) $1+2\left(z+z^{2}+z^{3}\right.$ \qquad
(B) $-1-2\left(z+z^{2}+z^{3} \ldots \ldots ..\right)$
(C) $-1+2\left(z-z^{2}+z^{3} \ldots \ldots \ldots\right)$
(D) None of the above
47. In the circuit shown in fig. when the voltage V_{1} is 10 V , the current \square is 1 A . If the applied voltage at port-2 is 100 V , the short circuit current flowing through port 1 will be
(A) 0.1 A
(B) 1 A
(C) 10 A
(D) 100 A

COMMON DATA Ques Q.48-49:
For the circuit shown in fig., let the value of $\square R=0.5$. and $\square F=50$. The saturation current is $10^{-16} \mathrm{~A}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714

48. The base-emitter voltage is
(A) 0.53 V
(B) 0.7 V
(C) 0.84 V
(D) 0.98 V
49. The current I_{1} is
(A) -12.75 mA
(B) 12.75 mA
(C) 125 mA
(D) -125 mA

Common data Q. 50-51
Consider a p channel enhancement mode MOSFET with $\mathrm{k}_{\mathrm{p}}^{\prime}=40 \square \mathrm{~A} / \mathrm{V}^{2}$. The device has following observations:
$\mathrm{I}_{\mathrm{D}}=0.225 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{SG}}=\mathrm{V}_{\mathrm{SD}}=3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D}}=1.4 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{SG}}=\mathrm{V}_{\mathrm{SD}}=4 \mathrm{~V}$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 20
50. Value of the threshold voltage V_{TP} is \qquad
51. The ratio W / L is \qquad

Linked Answer Questions 52 and 53

The following two question refer to wide sense stationary stochastic processes
52. It is desired to generate a stochastic process (as voltage process) with power spectral density

$$
S(\square)=\frac{16}{16+\omega^{2}}
$$

by driving a Linear-Time-Invariant system by zero mean white noise (as voltage process) with power spectral density being constant equal tom1. The system which can perfomr the desired task could be
(A) first order lowpass R-L filter
(B) first order highpass R-C filter
(C) tuned L-C filter
(D) sseries R-L filter
53. The parameters of the system obtained in Q. 78 would be
(A) first order R-L lowpass filter would have $R=4 \square, L=4 H$
(B) first order R-C highpass filter would have $R=4 \square, C=0.25 \mathrm{~F}$
(C) tuned L-C filter would have $L=4 \mathrm{H}, \mathrm{C}=4 \mathrm{~F}$
(D) series $R-L-C$ lowpass filter would have $R=1 \square, L=4 H, C=4 F$

Linked Answer Questions 54 and 55

Consider the following Amplitude Modulated (AM) signal, where $f_{m}<B$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 21

$$
x_{A M}^{*}(t)=10\left(1+0.5 \sin 2 \square f_{m} t\right) \cos 2 \square f_{c} t
$$

54. The average side-band power for the $A M$ signal given above is
(A) 25
(B) 12.5
(C) 6.25
(D) 3.125
55. The AM signal gets added to a noise with Power Spectrial Density $S_{n}(f)$ given in the figure below. The ratio of average side-band power to mean noise power would be
(A) $\frac{25}{8 N_{0} B}$
(B) $\frac{25}{4 \mathrm{~N}_{0} \mathrm{~B}}$
(C) $\frac{25}{2 \mathrm{~N}_{0} \mathrm{~B}}$

25
(D)
$\mathrm{N}_{0} \mathrm{~B}$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
56. REASON : SFBTPO :: THINK : ?
(A) SGHMJ
(B) UIJOL
(C) UHNKI
(D) UJKPM
57. MORTAL opposite word -
(A) Divine
(B) Immortal
(C) Spiritual
(D) Eternal
58. ALERT similar word -
(A) Energetic
(B) Observant
(C) Intelligent
(D) Watchful
59. A shopkeeper expects a gain of 22.5% on his cost price. If in a week, his sale was of Rs. 392 , what was his profit?
(A) Rs. 18.20
(B) Rs. 70
(C)Rs. 72
(D) Rs. 88.25
60. IF '+' stands for '-' , '-' stands for 'x', 'x' stands for ' $-\div$ 'and ' \div 'stands for ' + 'then what is the value of $56 \times 7 \div 13-11+15-8 \div 2-7$?

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 23
(A) 30
(B) 45
(C) 60
(D) 90
61. 'Captain' is related to 'Soldier' in the same way as 'Leader' is related to
(A) Chair
(B) Followers
(C) Party
(D) Minister
62. PORK:PIG
(A) rooster:chicken
(B) mutton:sheep
(C) steer:beef
(D) lobster:crustacean
63. My uncle decided to take \qquad and my sister to the market.
(A) I
(B) mine
(C) me
(D) myself
64. Answer the question based on the given line graph.

Ratio of Exports to Imports (in terms of money in Rs. crores) of Two Companies Over the Years

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 24

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

In how many of the given years were the exports more than the imports for
Company A?
(A) 2
(B) 3
(C) 4
(D) 5
65. Look at this series: $58,52,46,40,34, \ldots$ What number should come next?
(A) 26
(B) 28
(C) 30
(D) 32

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

Answer key

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	B	B	D	B	D	A	C	A	1.5	B	B	$\begin{gathered} 3 \\ \text { ohm } \end{gathered}$	D	1/2 J	A	2/13	c	4 R	9	$\begin{gathered} -0.05 \\ \text { mho } \end{gathered}$
Question	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Answer	A	B	A	$\begin{array}{\|c\|} \hline 80 \\ \text { ohms } \end{array}$	C	2.5	A	A	B	C	D	D	A	C	B	B	D	A	B	A
Question	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Answer	B	B	D	D	D	C	C	C	A	-2.33 V	25	A	A	C	B	B	B	D	C	B
Question	61	62	63	64	65															
Answer	B	B	C	B	B															

HINTS AND SOLUTIONS

1.(B) If $\square_{1}, \square_{2} \ldots \ldots \ldots \ldots . \square_{n}$ are the eigen values of a non - singular matrix, A, then A^{-1} has the eigen values $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \ldots \ldots . \frac{1}{\lambda_{n}}$ Thus eigen values of A^{-1} are $\frac{1}{2}, \frac{1}{3}, \frac{-1}{3}$
2.(B) Let 2 a and 2 b be the major and minor axes of the ellipse

$$
\text { Area } A=\square a b
$$

$$
\square \quad \log A=\log +\log a+\log b
$$

$$
\square \quad \partial(\log A)=\partial(\log \square+\partial(\log a)+\partial(\log b)
$$

$$
\text { A } \frac{\partial a}{A}=0+\frac{\partial a}{a}+\frac{\partial b}{b}
$$

$$
\frac{100}{A} \partial A=\frac{100}{a} \partial a+\frac{100}{b} . \partial b
$$

But it is given that $\frac{100}{a} \partial a=1$ and $\frac{100}{b} \partial b=1$

Toll Free: 1800-2000-092
Phone: 0744-2429714
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

C L A SSES

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

$$
\frac{100}{A} \partial A=1+1=2
$$

Thus percentage error in $\mathrm{A}=2 \%$
3.(D) Let $I=\int \frac{d x}{e^{x}-1}=\int \frac{e^{-x} d x}{1-e^{-x}}$

Put $1-e^{-x}=t$

$$
e^{-x} d x=d t
$$

$$
I=\int \frac{d t}{t}=\log t=\log \left(1-e^{-x}\right)
$$

4.(B) $\quad R_{i}=\frac{V_{i}}{I_{i}}$

Since inverting input terminal is assumed to be at 0 volt.
Hence, only 10 k is seen as inputresistance

$$
\mathrm{R}_{\mathrm{i}}=10 \mathrm{k} \square
$$

5.(D) First frequency-at a pole and last frequency at a zero for stability.
6.(A) $\quad V_{2}(s)=K V_{1}$
(s)

$$
\begin{aligned}
\frac{V_{1}(s)}{2}+\frac{V_{1}(s)-K V_{1}(s)}{4+s+\frac{1}{s}} & =0 \\
4+s+\frac{1}{s}+2-2 k & =0
\end{aligned}
$$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

$$
\begin{gathered}
s^{2}+(6-2 K) s+1=0 \\
(6-2 K)>\quad \square K<3
\end{gathered}
$$

7.(C) Let E " the event that A solves the problem. and F " the event that B solves the problem.

Clearly E and F are independent events.

$$
P(E)=\frac{90}{100}=0.9, \quad P(F)=\frac{70}{100}=0.7
$$

$P(E F)=P(E) \cdot P(F)=0.9 \times 0.7=0.63$
Required probability $=P(E \cup F)$
$=P(E)+P(F)-P(E \cap F)=(0.9+0.7-0.63)=0.97$
8.(A)

$\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{s}}}=-0.90(-$ ive due to reverse current $)$
$V=0.0259 \ln (1-0.9)=-59.6 \mathrm{mV}$
9. $\quad 1.5$
$\left(\frac{d y}{d x}\right)_{a t x=0}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{y(1)-y(-1)}{1-(-1)}=\frac{8-5}{2}=1.5
$$

10.(B) $\frac{v_{0}(s)}{V_{s}(s)}=\frac{2}{\frac{4}{s}+2 s+2}=\frac{1}{s^{2}+s+2}$

The roots are imaginary so network is undamped.

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 28
11.(B) For D off, $u_{0}=\frac{\frac{10}{20}-\frac{10}{20}}{\frac{1}{20}+\frac{1}{10}}=3.33 \mathrm{~V}$.

For $v_{i} \leq 3.33+0.7=4.03 \mathrm{~V}, v_{0}=3.33 \mathrm{~V}$
For $v_{i} \geq 4.03 \mathrm{~V}, v_{0}=v_{i}-0.7$
For $v_{i}=10 \mathrm{~V}, v_{0}=9.3 \mathrm{~V}$
12. 3 ohm

Current through the 4-ohm resistor $=\mathrm{i}-\frac{\mathrm{i}}{4}=\frac{3 \mathrm{i}}{4}$.
Therefore, the voltage drop across it

$$
=\left(\frac{3 i}{4}\right) \times 4=3 i \text { which must equal } \mathrm{V}
$$

Thus effective resistance faced by the voltage source is 3
13.(D) Here \bar{A}, \bar{B} are 1's complement.
$A+B, \quad A$
$B-A=B+\bar{A} \quad B \quad 11101100$

$$
\bar{A}+10101001
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
\qquad
110010101

\qquad
10010110
$A-B=A+, \bar{B} \quad 01010110$
$\overline{\mathrm{B}}+00010011$
$-\mathrm{A}-\mathrm{B}=\overline{\mathrm{A}}+\overline{\mathrm{B}}, \overline{\mathrm{A}} \quad 10101001$
$\overline{\mathrm{B}}+00010011$
14. $\frac{1}{2} \mathrm{~J}$

Current that flows is given by

\qquad

$$
\left\{\begin{array}{l}
\because \mathrm{v}|\mathrm{t}|=\delta|\mathrm{t}| \\
\therefore \mathrm{v}|\mathrm{~s}|=1
\end{array}\right\}
$$

Energy supplied $=\frac{1}{2} \mathrm{LI}^{2}=\frac{1}{2}(1)(1)=\frac{1}{2} \mathrm{~J}$
15.(A) $p_{0}=N_{v} e^{\frac{\left(E_{F}-E_{\mathrm{V}}\right)}{K T}}=1.04 \times 10^{19} \mathrm{e}^{\frac{-0.22}{0.025}}=2 \times 10^{15} \mathrm{~cm}^{-3}$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
16. $\frac{2}{13}$

Assume current flowing as shown

$\mathrm{V}_{2}=4 \times 1=4 \mathrm{~V}$
$\square \quad \mathrm{I}_{1}=\frac{\mathrm{V}_{2}}{2} \Rightarrow \frac{4}{2}=2 \mathrm{Amp}$.
$\square \quad \square_{\square}=2+1=3 \mathrm{~A}$.

$$
V_{A}=V_{2}+2 \times 3
$$

$\square \quad \mathrm{V}_{\mathrm{A}}=4+6=10 \mathrm{~V}$

$$
I_{3}=\frac{10}{2}=5 \mathrm{~A}
$$

$$
\square_{4}=\square_{3}+\square_{2}=8 \mathrm{~A}
$$

$$
\mathrm{V}_{1}=\mathrm{V}_{\mathrm{A}}+8 \times 2=10+16=26 \mathrm{~V}
$$

17.(C) Only statement (b) is false. For example
$S_{1}: y[n]=x[n]+b$, and $S_{2}: y[n]=x[n]-b$, where $b \neq 0$
$S\{x[n]\}=\left\{S_{2}\{x[n]\}\right\}=S 2\{x[n]+b=x[n]\}$
Hence S is linear.
18. $4 R$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

For both the circuits \square remains the same.

$$
I=\frac{V}{R_{e q}}
$$

$\square \quad \mathrm{V}$ is also same as given only V . so for same current, $\mathrm{R}_{\text {eq }}$ should be same for circuit (i), all the three resistors are in parallel,
$\square \quad R_{\text {eq }}=32 R| | 16 R| | 8 R$.

$$
R_{e q}=\frac{32}{7} R
$$

(1)

For circuit (ii)

$$
R_{\text {eq }}=(4 R\|2 R\| R)+R_{0}
$$

$\left\{\square R_{0}\right.$ is in series with parallel combination of $4 R, 2 R$ and $\left.R\right\}$
$\square \quad \mathrm{R}_{\mathrm{eq}}=\left[\left(\frac{4 \times 2}{4+2}\right) 11 \mathrm{R}\right]+\mathrm{R}_{0}$

$$
\square \quad R_{e q}=\frac{\frac{4}{3} \times 1}{\frac{4}{3}+1}+R_{0}
$$

$\square \quad R_{\text {eq }}=\frac{4}{7} R+R_{0}$
Now (1) and (2) is equal
so $\quad \frac{4}{7} R+R_{0}=\frac{32}{7} R$
$\square \quad \mathrm{R}_{0}=\frac{28}{7} \mathrm{R}=4 . \mathrm{R}$
19.(C) Pole of system at : $z=-\frac{1}{2}, \frac{1}{3}$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 32

Pole of inverse system at : $z=-\frac{1}{2}$
For this system and inverse system all poles are inside $|z|=1$. So both system are both causal and stable.
20. -0.05 mho

The equivalent Y - parameter circuit of given circuit is

$Y_{11}=Y_{A}+Y_{B}$
$Y_{12}=-Y_{B}$
$Y_{21}=-Y_{B}$
$Y_{22}=Y_{B}+Y_{C}$

Here

$$
Y_{A}=\frac{1}{5}=0.2
$$

21.(A) In open loop system change will be 10% in C_{1} also but in closed loop system change will be less $C_{2}=\frac{10}{10+1}=\frac{10}{11}, \quad C_{2}^{\prime}=\frac{9}{9+1}=\frac{9}{10}, C_{2}$ is reduced by 1%.
22.(B) Routh table is as shown in fig.

s^{5}	1	5	1
s^{4}	3	4	3
s^{3}	3.67	0	
s^{2}	4	3	
s^{1}	-2.75		
s^{0}	3		

In RHP -2 poles. In LHP - 3 poles.
23.(A) System has two different poles on negative real axis. So response is over damped.
24. 80 ohms

Output voltage is regulated to the zener voltage 6 V .

Zener diode current, $\square_{z k}=5 \mathrm{~mA}$
This is the minimum current drawn by zener hence load current \square_{L} will be maximum.
$\square \mathrm{L} \max =80-5=75 \mathrm{~mA}$
$\square \quad \mathrm{R}=\frac{6}{75 \times 10^{-3}}=80 \mathrm{ohms}$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 34
25.(C) The open - loop poles in RHP are $P=0$. Nyquist path enclosed 2 times the point $(-1+j 0)$ taking clockwise encirclements as negative $\mathrm{N}=-2$.
$N=P-Z,-2=0-Z, Z=2$ which implies that two Poles of closed loop system are on RHP.
26. 2.5

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{p}}=-5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{as}}=-3 \mathrm{~V} \\
& \mathrm{~g}_{\mathrm{m}}=1 \mathrm{ma} / \mathrm{V} \\
& \mathrm{~g}_{\mathrm{m} 0}=?
\end{aligned}
$$

Transconductance for JFET is given as -

$$
g_{m}=g_{m 0}\left(1-\frac{V_{a}}{V_{p}}\right)
$$

$$
g_{m 0}=g_{m}\left(1-\frac{V_{a}}{V_{p}}\right)^{-1}
$$

$$
\square \quad g_{m 0}=1\left[1-\frac{-3}{-5}\right]^{-1}
$$

$$
\square \quad g_{m}=1(0.4)^{-1}=\frac{1}{0.4}
$$

27. (A) $\quad \bar{T}_{e}=T_{0}(\overline{\mathrm{~F}}-1) \leq 290(1.7-1)=203 \mathrm{~K}$
28.(A) $I_{t}=I_{c}\left(1+\frac{\alpha^{2}}{2}\right)^{\frac{1}{2}}$ or $20=18\left(1+\frac{\alpha^{2}}{2}\right)^{\frac{1}{2}}$ or $\alpha=0.68$
29.(B) Since High - side tuning is used

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
$f_{L O}=f_{m}+F_{I F}=500 \mathrm{kHz}$.
$\mathrm{f}_{\mathrm{LOL}}=5+0.5=5.5 \mathrm{MHz}$,
$\mathrm{f}_{\text {LOtj }}=10+0.5=10.5 \mathrm{MHz}$
30.(C) $P=\frac{(S N R)_{1}}{(S N R)_{2}}=\frac{2^{2 n_{1}}}{2^{n_{2}}}$, Here $\mathrm{n}=$ code word length, $\mathrm{n}_{1}=6, \quad \mathrm{n}_{2}=8$,

Thus rate $=\frac{2^{16}}{2^{12}}=16$
31.(D) For $E_{y}=0,2 y \sin 2 x=0 \square y=0$
$\sin 2 x=0 \square 2 x=0, \square, 3 \square, \square x=0, \frac{3 \pi}{2}$
Hence (D) is correct.
32.(D) $\quad \nabla \times A=\left[\begin{array}{ccc}u_{x} & u_{y} & u_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2} y & y^{2} z & -2 x z\end{array}\right]=-y^{2} u_{x}+2 z u_{y}=x^{2} u_{z}$

$$
\nabla(\nabla \times \mathrm{A})=0
$$

33.(A) $F=\int 1 d L \times R=\int^{2} d x u_{x} \times B+1 \int_{1}^{2} d y u_{y} \times B+1 \int_{1}^{3} d x u_{x} \times B+1 \int_{2}^{1} d y u_{y} \times B$
$u_{x} \times B=u_{x}\left[6 x u_{x}-9 y u_{y}+3 z u_{z}\right]=3 z u_{y}-y u_{z}$
$u_{y} \times B=u_{y}\left[6 x u_{x}-9 y u_{y}+3 z u_{z}\right]=3 z u_{x}-6 x u_{z}$
$z=0$ for all element
$F=1 \int_{1}^{3} d x\left(-9 y u_{z}\right)_{y=1}+1 \int_{1}^{2} d y\left(6 x u_{z}\right)_{x 3}+1 \int_{3}^{1} d x\left(-9 y u_{z}\right)_{y=2}+1 \int_{2}^{1} d y\left(-6 x u_{z}\right)_{x=1}$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

$$
=I(-18-18+36+6) u_{z}=5 \times 6 u_{z}=30 u_{z} N
$$

34.(C) For nonmagnetic medium $\square_{r}=1$

$$
\begin{array}{ll}
\beta=\frac{\omega}{v}=\frac{\omega}{c} \sqrt{\varepsilon_{r}} & \omega=10^{9}, \beta=8 \\
8=\frac{10^{9}}{3} \times 10^{8} \sqrt{\varepsilon_{r}} & \Rightarrow \varepsilon_{r}=5.76
\end{array}
$$

35.(B) $\eta=\frac{377}{\sqrt{\varepsilon_{\mathrm{r}}}}=\frac{377}{1.5}=251.33 \Omega$

$$
\eta=\frac{\eta}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}}=\frac{251.33}{\sqrt{1-\left(\frac{16}{24}\right)^{2}}}=337.2 \Omega
$$

36.(B) Efficiency $=\frac{63}{63+7}=0.9$

$$
\mathrm{D}=\frac{\text { Gain }}{\text { Efficiency }}=\frac{16}{0.9}=17.78=12.5 \mathrm{~dB}
$$

37.(D)

$$
f_{r}=\frac{v}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}+\left(\frac{p}{c}\right)^{2}}=\frac{3 \times 10^{8}}{2 \times 0.01} \sqrt{\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=9 \mathrm{GHz}
$$

38.(A)

$$
\begin{gathered}
(r+200) 2=4(r+50) 2 \\
\square r=100
\end{gathered}
$$

Toll Free: 1800-2000-092
Phone: 0744-2429714

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 37
$i=30 \mathrm{~A}, P_{\max }=\frac{(30)^{2} \times 100}{4}=22.5 \mathrm{~kW}$
39.(B) $\quad \mathrm{R}_{\mathrm{TH}}=\frac{v_{\mathrm{oc}}}{\mathrm{i}_{\mathrm{sc}}}=\frac{12}{1.5}=8 \Omega$
40.(A)
$\nabla . P=0, \quad \nabla \times p=-\frac{\partial P_{z}}{\partial x} u_{y} \neq 0$
P is a possible EM field
$\nabla . Q=0, \quad \nabla \times Q=-\frac{1}{\rho} \frac{\partial}{\partial \rho}[10 \cos (\square t-2 \square)] u_{z} \neq 0$
$\nabla \cdot R=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(3 \rho^{2} \cot \phi\right) \cdot \frac{\sin \phi}{\rho} \neq 0, R Q$ is a possible EM field
is not an EM field.
$\nabla . S=\frac{1}{r^{2} \sin \theta} \sin (\omega t-6 r) \frac{\partial\left(\sin ^{2} \phi\right)}{\partial r} \neq 0$
S is not an EM field. Hence (A) is correct.
41.(B) \quad Bit Rate $=8 \mathrm{k} \times 8=64 \mathrm{kbps}$
$(S N R)_{q}=1.76+6.02 n d B=1.76+6.02 \times 8=49.8 d B$
42.(B) Since X (f) has spectral peak at 1 kHz so at the output of first modulator spectral peak will be at $(10+1) \mathrm{kHz}$ and $(10-1) \mathrm{kHz}$. After passing the HPF frequency component of 11 kHz will remain. The output of 2nd modulator will be $(13 \pm 11) \mathrm{kHz}$. So $Y(f)$ has spectral peak at 2 kHz and 24 kHz .
43.(D) A shunt feed back decreases R_{i} and increases R_{0}
44.(D) $100110_{2}=2^{5}+2^{2}+2^{1}=38_{10}$
$26_{16}=2 \times 16+6=38_{10}$
$212_{4}=2 \times 4^{2}+4^{1}=38_{10}$
So 36_{10} is not equivalent
45.(D) $\mathrm{K}_{\mathrm{p}}=\left(\frac{30 \times 10^{-6}}{2}\right)(20)=0.3 \mathrm{~mA} / \mathrm{V}^{2}$
$\mathrm{I}_{\mathrm{p}}=\mathrm{kp}\left(\mathrm{V}_{\mathrm{SG}}+\mathrm{V}_{\mathrm{TP}}\right)^{2} \quad 0.5=0.3\left(\mathrm{~V}_{\mathrm{GS}}+1.2\right)^{2}$
$\mathrm{V}_{\mathrm{SG}}=2.49 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}}=0$
$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SG}}=2.49 \mathrm{~V}$
$I_{D}=\frac{5-V_{s}}{R_{s}} \Rightarrow R_{D}=\frac{5-2.49}{0.5 m}=5.02 \mathrm{k} \Omega$
$\mathrm{I}_{\mathrm{D}}=\frac{\mathrm{V}_{\mathrm{D}}-(-5)}{\mathrm{R}_{\mathrm{D}}} \Rightarrow \mathrm{R}_{\mathrm{D}}=\frac{-3+5}{0.5 \mathrm{~m}}=4 \mathrm{k} \Omega$
46.(C) $f(z)=\frac{z-1}{z+1}=1-\frac{2}{z+1}$

$$
\begin{aligned}
& f(0)=-1, f(1)=0 \\
& f(z)=\frac{2}{(z+1)^{2}} \Rightarrow f^{\prime}(0)=2
\end{aligned}
$$

$f^{\prime \prime}(z)=\frac{-4}{(z+1)^{3}} \Rightarrow f "(0)=12$; and so on.
Now, Taylor series is given by
$f(z)=t\left(z_{0}\right)+\left(z-z_{0}\right) f^{\prime}\left(z_{0}\right)+\frac{\left(z-z_{0}\right)^{2}}{2!} f f^{\prime \prime}\left(z_{0}\right)+\frac{\left(z-z_{0}\right)^{3}}{3!} f " '\left(z_{0}\right)+\ldots \ldots \ldots$.
about $z=0$

Toll Free: 1800-2000-092
Phone: 0744-2429714

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 39
$f(z)=-1+z(2)+\frac{z^{2}}{2!}(-4)+\frac{z^{3}}{3!}(12)+$.
$=-1+2 z-2 z^{2}+2 z^{3} \ldots \ldots \ldots$
$f(z)=-1+2\left(z-z^{2}+z^{3} \ldots \ldots ..\right)$
47.(C) $\left.\quad \frac{\mathrm{I}_{2}}{\mathrm{l}_{1}}\right|_{\mathrm{v}_{2}=0},=\mathrm{y}_{21}=\frac{1}{10}=0.1$

Interchanging the port $\frac{i_{2}^{\prime}}{V_{1}^{\prime}}=0.1, I_{2}^{\prime}=100 \times 0.1=10$
48.(C) The current source will forward bias the base-emitter junction and the collector base junction will then be reverse biased. Therefore the transistor is in the forward active region

$$
\begin{aligned}
& I_{C}=I_{S} e^{\left(\frac{V_{\text {BE }}}{V_{t}}\right)} \\
& I C=\square_{F} I=50 \times 250 \times 10^{-6}=12.5 \times 10^{-3} \mathrm{~A} \\
& V_{B E}=V_{1} \ln \left(\frac{I_{C}}{I_{\mathrm{S}}}\right)=0.0259 \ln \left(\frac{12.5 \times 10^{-5}}{10^{-16}}\right)=0.84 \mathrm{~V}
\end{aligned}
$$

49.(A) $\mathrm{I}_{E}=\left(\square_{F}+1\right) \mathrm{I}_{\mathrm{B}}=12.75 \mathrm{~mA}$

$$
{ }^{-1} E=12.75 \mathrm{~mA}
$$

50.

$$
-2.33 \mathrm{~V}
$$

$$
D=K_{[}\left[V_{S G}+V_{T P}\right]^{2}
$$

$$
\quad \frac{\mathrm{I}_{\mathrm{D} 1}}{\mathrm{I}_{\mathrm{D} 2}}=\frac{\left(\mathrm{V}_{\mathrm{Sa}_{1}}+\mathrm{V}_{\mathrm{TP}}\right)^{2}}{\left(\mathrm{~V}_{\mathrm{Sa}_{2}}+\mathrm{V}_{\mathrm{TP}}\right)^{2}}
$$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

$$
\begin{aligned}
& \square \quad \frac{0.225}{1.4}=\frac{\left(3+\mathrm{V}_{\mathrm{TP}}\right)^{2}}{\left(4+\mathrm{V}_{\mathrm{TP}}\right)^{2}}=0.161 \\
& \square \quad \mathrm{~V}_{\mathrm{TP}}=-2.33 \mathrm{~V}
\end{aligned}
$$

51. 25

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}(\text { Sat })}=\frac{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}^{\prime}}{2} \frac{\mathrm{~W}}{\mathrm{~L}}\left[\mathrm{~V}_{\mathrm{SG}}+\mathrm{V}_{\mathrm{TA}}\right]^{2} \\
& 0.225=\left(\frac{0.040}{2}\right)\left(\frac{\mathrm{W}}{\mathrm{~L}}\right)(3-2.33)^{2} \\
& \square \quad \frac{\mathrm{~W}}{\mathrm{~L}}=25
\end{aligned}
$$

52.(A) $\quad S_{Y Y}(\square) \quad=|H(\square)|^{2} \cdot S_{X X}(\square)$

Given, $\quad S_{X X}(\square) \quad=1$ [while noise]

53.(A)

$$
\mathrm{R}=4 \square, \mathrm{~L}=4 \mathrm{H}
$$

54.(C) Average side-band power, $\mathrm{P}_{\mathrm{av}}=\frac{\mu^{2} A_{c}^{2}}{4}$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 41

CLASSES

$$
=\frac{0.5^{2} \times 100}{4}=6.25
$$

55.(B) Noise power (Area endored by the spectrum) $=N_{0} B$

Ratio of average side band honour to mean
noise honer $=\frac{25}{4 \mathrm{~N}_{0} \mathrm{~B}}=\frac{6.25}{\mathrm{~N}_{0} \mathrm{~B}}$
56.(B)

$$
\begin{aligned}
& \begin{array}{cc}
\begin{array}{c}
A \mathrm{~s} \\
\mathrm{R} \xrightarrow{+1} \mathrm{~S}
\end{array} & \begin{array}{c}
\text { Similarly }
\end{array} \\
\mathrm{T} \xrightarrow{+1} \mathrm{U}
\end{array} \\
& \mathrm{E} \xrightarrow{+1} \mathrm{~F} \quad \mathrm{H} \xrightarrow{+1} \mathrm{I} \\
& A \xrightarrow{+1} \mathrm{~B} \\
& I \xrightarrow{+1} \mathrm{I} \\
& \mathrm{~S} \xrightarrow{+1} \mathrm{~T} \\
& \mathrm{O} \xrightarrow{+1} \mathrm{P} \\
& \mathrm{~N} \xrightarrow{+1} \mathrm{O}
\end{aligned}
$$

57.(B) Mortal means causing or capable of causing death while Immortal means one who is not subject to death.
58.(D) Alert means engaged in or accustomed to close observation, ie. Watchfulness.
59.(C)

Profit $=$ Rs. $(392-320)=$ Rs. 72.
60.(B) Changing the symbols as given in the problem the above expression is
$56 \div 7+13 \times 11-15 \times 8+2 \times 7$
Solving the BODMAS rule, we get $8+143-120+14=165-120=45$

Toll Free: 1800-2000-092
Phone: 0744-2429714
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 42
61.(B) 'Captain' is supposed to lead the battalian of 'Soldiers' int he same way as 'Leader' is supposed to lead the 'Followers'
62.(B) Pork is meat from a domestic hog or pig. Similarly, mutton is meat from a mature domestic sheep.
63.(C) My uncle decided to take me and my sister to the market.
64.(B) The exports are more than imports in those years for which the exports to imports ratio are more than 1. For Company A, such years are 1995, 1996 and 1997

Thus, during these 3 years, the exports are more than the imports for Company A.
65.(B) This is a simple subtraction series. Each number is 6 less than the previous number.

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 43

