

- There are a total of 65 questions carrying 100 marks.
- Questions (1-25) will carry 1-mark each and questions (26-55) will carry 2-markseach.
- Questions (56-65) belongs to general aptifude (GA). Questions (56-60) will carry 1-mark each, and question (61-65) will carry 2-marks each
- For Q. 1-25 and Q.56-60 $1 / 3$ mark will be deducted for each wrong answer.For Q.26-51 and Q. 61-65 2/3 mark will be deducted for each wrong answer. The question pairs (Q.52, Q.53) and (Q.54, Q.55) are linked questions.For Q. 52 \& 54 2/3 mark will be deducted. There is no negative marking for Q. 53 \& Q.55.
- Q.48-51 are common data questions.

If first question is attempted wrongly then answer of second question will not be evaluated.
Pattern of questions:MCQs \& Numerical

- Totalmarks : 100
- Duration of test : 3 Hours

VPM CLASSES

For IIT-JAM, JNU, GATE, NET, NIMCET and Other Entrance Exams
1-C-8, Sheela Chowdhary Road, Talwandi, Kota (Raj.) Tel No. 0744-2429614
Web Site www.vpmclasses.com E-mail-vpmclasses@yahoo.com

Toll Free: 1800-2000-092
Phone: 0744-2429714

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

Q 1-25 (1 MARK EACH)

1. The minimum number of edges in a connected graph having 11 vertices is \qquad
2. The minimum no. of d-flip-flop needed to design a mod-6 counter is?
(A) 4
(B) 2
(C) 3
(D) 1
3. A process is usually defined as a "heavy weight process because -
(A) It is equal to task with one thread
(B) Thread with one or more task
(C) Both A \& B
(D) None of these
4. Consider a graph

State whether there exits a eulerian path or a eulerian circuit.
(A) There exits a eulerian circuit but not eulerian path.
(B) There exits a eulerian path
(C) There exits a eulerian circuit.
(D) none of these
5. Using Trapezoidal rule the value of $\int_{4}^{5.2} \ell n x d x$ using the table given below will be \qquad $-$

4 | $\mathrm{x}:$ | 4.0 | 4.2 | 4.4 | 4.6 | 4.8 | 5.0 | 5.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\ln x:$ | 1.386 | 1.435 | 1.482 | 1.526 | 1.569 | 1.609 | 1.649 |

6. Consider the FSM. The string accepted by the FSM is
(A) All strings
(B) no string
(C) \in-alone
(D) None of these

7. If a continuous random variable X follows rectangular distribution in the range $(2,7)$, then the probability $p(2.5 \leq X \leq 4)$ is \qquad
8. Which data structure are used to implement a priority queue ?
(A) binomial heap
(B) heap
(C) Fibonacci heap
(D) All of these
9. Consider the language $L=\left\{a^{n} b^{n} ; n>0\right\}$, which grammanis generatedby language L ?
(A)

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{ab} \\
& \mathrm{~S} \rightarrow \mathrm{asb}
\end{aligned}
$$

(B)
$\mathrm{S} \rightarrow \mathrm{ab}|\mathrm{a}|$ sas
$S \rightarrow$ asb
$S \rightarrow a b$
(C) $\mathrm{S} \rightarrow$ asb
$S \rightarrow a$
(D) $\begin{aligned} & \mathrm{S} \rightarrow \text { abs } \\ & \mathrm{S} \rightarrow \text { bas }\end{aligned}$
10. Type checking is normally done during
(A) Lexical analysis
(B) Syntax analysis
(C) Semantic analysis
(D) Code optimization
11. CG is used in \qquad .
(A) Creating static documents
(B) Creating dynamic documents
(C) Communication with http server
(D) All of these
12. A fair die is tossed what is the probability of an event that an even number appears in the toss of a fair die ?
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{1}{6}$
13. An SNMP agent can send \qquad messages.
(A) GetRequest
(B) SetRequest
(C) GetNextRequest
(D) Trap
14. Let for an organic type software, the size estimated is 36KLQC. Average salary of an engineer is Rs. 20000/- per month. What is the effort and time for the development? Given $a=2.4, b=1.05$
(A) 105 PM
(B) 103 PM
(C) 109 PM
(D) 104 PM
15. Thread is a light weight process. It consists -
(A) Program counter
(B) Stack space
(C) Register Set
(D) All of these
16. A company needs to develop signal processing software for one of its newest inventions. The s / w is expected to have 20000 lines of code. The multiplicative factor for this model is given as 2.8 for the software development on embedded system, while expectation factor is given as
1.20. What is the estimated effort in PM. (person-month)
(A) 234.25
(B) 122.40
(C) 101.95
(D) 101.05
17. The following grammar contain \qquad number of variables when converted to CNF?
$E \rightarrow E+T$
$\mathrm{E} \rightarrow \mathrm{T}$
$\mathrm{T} \rightarrow$ (E)
$\mathrm{T} \rightarrow \mathrm{i}$
18. Which type of testing is used when specification are described by grammar?
(A) white box testing
(B) functional testing
(C) syntax-driven testing
(D) none of these
19. The occurrence of interrupt handler with execution of program is
(A) Synchronous
(B) Asynchronous
(C) Un-synchronous
(D) none of these
20. Given $R(A, B, C, D, E)$ with the functional dependencies $F\{A B \rightarrow C D$,
$A \rightarrow E, C \rightarrow D\}$, the decomposition of R into $R_{1}(A, B, C), R_{2}(B, C, D)$ and $R_{3}(C, D, E)$ is
(A) Lossy
(B) Lossless
(C) Both A \& B
(D) None of these
21. If $p=100, q=80, r=20, s=10$ and $t=20$ then the minimum number of scalar multiplication needed is -
(A) 120,000
(B) 116,000
(C) 110,000
(D) none of these number of gate inputs are required to realize the following expression?
$F_{1}=A B C+A \bar{B} C D+E \bar{F}+A D$
23. Eigen value of $\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ is
(A) 0
(B) 2
(C) 3
(D) None of these
24. A 5 -stage pipeline system is in operation with clock cycle of $n \mathrm{~ns}$. If the clock per instruction (CPI) for non-pipeline system is 5 and instructions per clock for pipeline is 0.20 and pipeline efficiency is 70%, then what is the speedup factor?
(A) 13.5
(B) 14.5
(C) 15.5
(D) 17.5
25. The language $L(m)=\left\{V V^{R}: V E(a, b)^{*}\right\}$ is accepted by
(A) Deterministic PDA
(B) Non-Deterministic PDA
(C) Deterministic context free
(D) none of these

Q 26-55 (2 MARKS EACH)

26. The output of the following 'C' program is
main()
\{

$$
\begin{aligned}
& \text { Int } x=10, y=10, z=5, i \\
& i=x<y<z ; \\
& \text { printf("In\%d", } i)
\end{aligned}
$$

27. Given A disk with 512 bytes / sector, 300 sectors/track (on average),20,000 tracks/surface, 2 surfaces/platter ,5 platters/disk What is the eapacity of disk ?
(A) 29.72
(B) 30.72 GB
(C) 29.8 GB
(D) 30.8 GB
28. Which NDFA accepts $\mathrm{c} \cdot(\mathrm{a} \cup \mathrm{b})^{*}$?
29. Consider a query
select posting _no, Day shift
FROM DUTY_ALLOCATION, EMPLOYEE where DUTY _ALLOCATION EMPLOYEE no = Employee .Employee no. and Name = 'Ron'
The o/p of this query is
(A) select the shift details for all employee.
(B) retrieve the shift details for employee 'Ron
(C) retrieve the Employee details for employee Ron
(D) none of these
30. Consider an expression
($\mathrm{a}<\mathrm{b}$) and ($\mathrm{b}<\mathrm{c}$) and ($\mathrm{c}<\mathrm{d}$)
evaluating in preorderform is
(A) a $<$ b and b $<$ c and c $<$ d
(B) and $<a b<b c<c d$
(C) ab < bc and cd < and
(D) $\mathrm{ab}<\mathrm{bc}<\mathrm{cd}<$ and
31. Consider the language $L=\left\{a^{n}, b^{n}: n>O\right\}$ which is generated by grammar -
(A) regular grammar
(B) context free grammar
(C) context sensitive grammar
(D) None of these
32. A pipelined system affected by branch instruction is a 3 clock cycles. If 35% instructions are branch instructions and pipeline is operating with a clock cycle of 10 ns providing the speed up factor as 8 then what will be the number of stages in pipeline system?
(A) $n=10$
(B) $n=12$
(C) $n=16$
(D) $\mathrm{n}=15$
33. The following Boolean expression :
$E=\left((x y)^{\prime} z\right)^{\prime}\left(\left(x^{\prime}+z\right)\left(y^{\prime}+z^{\prime}\right)\right)^{\prime}$
What is minimal expression for this ?
(A) $\bar{x} y+z \bar{x}$
(B) $x \bar{z}+y \bar{z}$
(C) $x y z+x z^{\prime}$
(D) $x y \bar{z}+y \bar{x}$
34.

$\int_{-5}^{5}|x+2| d x=$
(A) 20
(B) 41
(C) 30
(D) 29
35. Given following statements
p : gilda is tall
q : gilda is beautiful
Write the following statement in symbolic form.
"itis false that gilda is short and beautiful "
(A) $p \vee(\sim p \wedge q)$
(B) $\sim(\sim p \vee q) \neq p \Lambda \sim q$
(C) $P \sim(\sim p \vee q)$
(D) $\sim p y(\sim p \vee \sim q)$
36. In an MxN matrix such that all non-zero entries are covered in a rows and b columns. Then the maximum number of non-zero entries, such that no two are on the same row or column, is
(A) $£ a+b$
(B) $£ \max \{a, b\}$
(C) $£ \min \{\mathrm{M}-\mathrm{a}, \mathrm{N}-\mathrm{b}\}$
(D) $£ \min \{a, b\}$
37. Consider the page sequence $4,3,2,1,4,3,5,4,3,2,1,5$.

If FIFO page replacement algorithm is used and frame size is 3 , then the percentage of page fault is \qquad .
38. Consider the boolean expression $E=x y^{\prime}+x y z^{\prime}+x^{\prime} y z^{\prime}$ What is the prime implicant for the expression E ?
(A) x
(B) z^{\prime}
(C) $x z^{\prime}$
(D) $x^{\prime} z$
39. Preemptive SJF Scheduling is given - what is average waiting time ? Process Arrival time Burst time

P_{1}	0	8
P_{2}	1	4
P_{3}	2	9
P_{4}	3	5

(A) 5.5 ms
(B) 5.9 ms
(C) 6.5 ms
(D) 7.5 ms
40. What is the return value of the function floor () when it is called floor
(8.2) -
(A) 9
(B) 8
(C) 8.2
(D) 0.2
41. What is the return value of the function ceil (8.1) is
(A) $8: 0$
(B) 9.0
(C) -9.0
(D) -8.0°
42. Consider the grammar $\{\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S}\}$. Set of productions are as follows:
$S \rightarrow b A \mid a B$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

A \rightarrow bAA $|\mathrm{aS}| a$
$\mathrm{B} \rightarrow \mathrm{aBB}|\mathrm{bS}| \mathrm{b}$
Then the equivalent grammar in CNF is
$\mathrm{S} \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{A} \mid \mathrm{C}_{\mathrm{a}} \mathrm{B}$
$\mathrm{A} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{S}\left|\mathrm{C}_{\mathrm{b}} \mathrm{D}_{1}\right| \mathrm{a}$
(A) $B \rightarrow C_{b} S_{\mid} C_{a} D_{2} \mid b$
$\mathrm{D}_{1} \rightarrow \mathrm{AA} \mathrm{D} \rightarrow \mathrm{BB}$
$\mathrm{Ca} \rightarrow \mathrm{C}_{\mathrm{b}} \rightarrow \mathrm{b}$
$S \rightarrow C_{b} A\left|C_{a} B\right| a \mid b$
(B)
$A \rightarrow C_{a} S\left|C_{b} D_{1}\right| A B$
$B \rightarrow C_{b} S\left|C_{a} D_{2}\right| a$
$D_{1} \rightarrow a|b| A A \mid B B$
$S \rightarrow C_{b} A \mid C_{a} B$
$\mathrm{S} \rightarrow \mathrm{AA} \mid \mathrm{BB}$
(C) $\mathrm{D} \rightarrow \mathrm{a} \mid \mathrm{b}$
$\mathrm{A} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{S} \mid \mathrm{C}_{\mathrm{b}} \mathrm{S}$
$B \rightarrow \mathrm{C}_{\mathrm{b}} \mathrm{S} \mid \mathrm{a}$
(D) None of these
43. The reduced state table is given in Table. Then each state is assigned a binary value -

Present state	Next state			Next state	
	$\mathrm{X}=0$	$\mathrm{X}=1$		$\mathrm{X}=0$	$\mathrm{X}=1$
	c	b		0	0
b	f	c		0	0
c	e	f		1	1
e	f	a		0	1
f	e	f		1	0

(A) $a=000, b=001, c=010, d=010, e=011, f=100$
(B) $a=000, b=100, c=010, d=010, e=110, f=001$
(C) $a=001, b=010, c=011, d=100, e=101, f=101$
(D) None of these
44. Let G be a graph with n vertices, which of the following is true?
(A) G is a tree
(B) G is connected graph
(C) Both A \& B
(D) none of these
45. A graph G is complete graph K_{n}, has spanning tree
(A) n^{n-1}
(B) n^{n-2}
(C) n^{1}
(D) n^{n}
46. Cyclometric complexity of the following is \qquad .

47. What is distance vector routing Algorithm ?
(A) periodically share its knowledge with its neighbors
(B) Routing only to neighbour
(C) Information sharing is not regular
(D) both A \& B

COMMON DATA Q48-49

Consider three IP networks A B and C. Hoṣt HA in network A sends messages each containing 180 bytes of application data to a host Hc in network C. The TCP layer prefixes a 20 byte header to the message. This passed through an intermediate network B. The maximum packet size, including 20 byte IP header, in each network is

$$
\begin{aligned}
& \text { A : } 1000 \text { bytes } \\
& \text { B: } 100 \text { bytes } \\
& \text { C: } 1000 \text { bytes }
\end{aligned}
$$

The network A and B are connected through a 1 Mbps link, while B and C are connected by a 512 Kbps link (bps = bits per second)

48. Assuming that the packets are correctly delivered, how many bytes, including headers, are delivered to the IP layer at the destination for one application message, in the best case ? Consider only data packets.
(A) 200
(B) 220
(C) 240
(D) 260
49. What is the rate at which application data is transferred to host H_{C} ? Ignore errors, acknowledgments, and other overhead.
(A) 325.5 Kbps
(B) 354.5 Kbps
(C) 409.6 Kbps
(D) 512.0 Kbps

COMMON DATA Q.50-51
The following program fragment is written in a programming language that allows variables and does not allow nested declarations of functions.
global int $\mathrm{i}=100, \mathrm{i}=5$;
void $P(x)\{$
int $\mathrm{i}=10$;
print ($\mathrm{x}+10$);
$\mathrm{i}=200$;
$j=20$;
print (x);
\}
main () $\{\mathrm{P}(\mathrm{i} \mathrm{j}) ;\}$
50. If the programming language uses static scoping and call by need parameter passing mechanism, the values printed by the above program are
(A) 115,220
(B) 25,220
(C) 25,15
(D) 115, 105
51. If the programming language úses dynamic scoping and call by name parameter passing mechanism, the values printed by the above prgram are
(A) 115, 220
(B) 25, 220
(C) 25,15
(D) 115, 105

Linked Answer Questions 52 and 53
The s and t be two vertices in a undirected graph $G+(V, E)$ having distinct positive edge weights. Let $[X, Y]$ be a partition of V such that $s \in X$ and $t \in Y$. Consider the edge e having the minimum weight amongst all those edges that have one vertex in Y
52. The edge e must definitely belong to:
(A) the minimum weighted spanning tree of G
(B) the weighted shortest path from s to t
(C) each path from s to t
(D) the weighed longest path from s to t
53. Let the weight of an edge e denote the congestion on that edge. The congestion on a path is defined to be the maximum of the congestion on the edges of the path. We wish to find the path from s to t having minimum congestion. Which one of the following path is always such a path minimum congestion?
(A) a path from s to t in the minimum weighted spanning tree
(B) a weighted shortest path from s to t
(C) an Euler walk from s to t
(D) a Hamiltonian path from s to t

Statement for Linked Answer Questions: 54 \& 55
Consider an 8085-microprocessor system.
The following program starts at location 0100H.
LXI SP, 00FF
LXI H, 0701
MVI A, 20H
SUB M
54. The content of accumulator when the program counter reaches 0109H is \qquad .
55. If in addition following code exists from 0109H onwards.

OR 40H
ADD M
The result in the accumulator after the last instruction is executed will be \qquad -

GENERAL APTITUDE

Q 56-60 (1, MARK EACH)
56. REASON.SFBTPO :: THINK :?
(A) SGHMJ
(B) UlJOL
(C) UHNKI
(D) UJKPM
57. MORTAL opposite word -
(A) Divine
(B) Immortal

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
(C) Spiritual
(D) Eternal
58. ALERT similar word -
(A) Energetic
(B) Observant
(C) Intelligent
(D) Watchful
59. A shopkeeper expects a gain of 22.5% on his cost price. If in a week, his sale was of Rs. 392, what was his profit?
(A) Rs. 18.20
(B) Rs. 70
(C) Rs. 72
(D) Rs. 88.25
60. IF '+' stands for '-' , '-' stands for 'x', 'x' stands for ' $-\dot{\text { ' }}$ 'and \div ' \div 'stands for '+'then what is the value of $56 \times 7 \div 13-11+15-8 \div 2-7$?
(A) 30
(B) 45
(C) 60
(D) 90

Q 61-65 (2 MARKS EACH)

61. 'Captain' is related to 'Soldier' in the same way as 'Leader' is related to
(A) Chair
(B) Followers
(C) Party
(D) Minister
62. POBK:PIG
(A) rooster:chicken
(B) mutton:sheep
(C) steer:beet
(D) lobster:crustacean
63. My uncle decided to take \qquad and my sister to the market.
(A) I
(B) mine
(C) me

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 14

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.
(D) myself
64. Answer the question based on the given line graph.

Ratio of Exports to Imports (in terms of money in Rs. crores) of Two Companies Over the Years

In how many of the given years were the exports more than the imports for Company A?
(A) 2
(B) 3
(C) 4
(D) 5
65. Look at this series: $58,52,46,40,34, \ldots$ What number should come next?
(A) 26
(B) 28
(C) 30
(D) 32

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 15

Answer key

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	10	C	A	B	1.8277	C	0.3	D	A	C	B	B	D	B	D	C	7	C	B	A
Question	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Answer	B	15	D	D	B	1	B	C	B	B	B	C	C	D	B	A	75\%	C	C	B
Question	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Answer	B	A	A	C	B	3	D	C	B	D	A	A	B	20H	20H	B	B	D	C	B
Question	61	62	63	64	65															
Answer	B	B	C	B	B															

HINTS AND SOLUTIONS.

1. 10

The minimum number of edges in a connected graph having 11 vertices is 10 because in a connected graph the minimum number of edges in a connected graph is $n-1$ where n is no. of vertices.
So $\quad n=11$
No. of edges $=n-1$
$=11-1$
$=10$
2.(C) $2^{n} \geq 6 \Rightarrow 2^{3} \geq 6$ so

3.(A) Heavy weight process. It is equal to a task with one thread.

A task does nothing if no threads are in it, and a thread must be in exactly one task.

According to diagram, here a and b are the two vertices with degree odd and all other vertices have even degree. Hence there exists a eulerian path:

$$
\{a-c-d-e-c-f-d-b-g-a b\}
$$

but no Eulerian circuit.

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
5. 1.8277
$\int_{4}^{5.2} \ell n x d x$
$n=\frac{b-a}{n}=\frac{5.2-4}{7}=0.17$
$\int_{4}^{5.2} \ell n x d x=\frac{h}{2}\left[1\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots \ldots y_{n-1}\right)\right]$
$\int_{4}^{5.2} \ell n x d x=\frac{0.2}{2}[(1.386+1.649)+2(1.435+1.482+1.526+1.569+1.609)]$
$=\frac{0.17}{2}[3.035+2(7.621)]$

$$
=\frac{0.2}{2} \times 18.277
$$

$$
=1.8277
$$

6.(C) Here the final state and the start state are one and the same. No transition is there. There is an (implicit) ε-transition from any state to itself. So, the only string that could be accepted is ε.
7. 0.3

Rectangular function $=\frac{1}{y-x}$
Rang $(2,7)\{y=7, x \neq 2\}$

$$
\text { R.F }=\frac{1}{7.2}=\frac{1}{5}
$$

Probability distribution

8.(D) A number of other data structures can also be used to implement a priority queue. the binomial heap, heap, Fibonacci heap, and so on.

1. Algorithm HeapSort (a, n)
2. $/ / \mathrm{a}[1: \mathrm{n}]$ contains n elements to be sorted. HeapSort
3. // rearranges them in place into non decreasing order.

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 17
4.

```
    {
    Heapify(a, n); // Transform the array into a heap.
    // Interchange the new maximum with the element
    // at the end of the array.
    for i := n to 2 step - 1 do
    {
        t := a[i];a[i]:= a[1];a[1] : = t;
            Adjust (a, 1, i - 1);
        }
        }
```


Algorithm Heap sort

Many of these data structures support the operations of deleting and searching for arbitrary elements (Red-Black tree being an example), in addition to the ones needed for a priority queue.
9.(A) Clearly the grammar G with the following production will generate G :

$$
S \rightarrow a b, \quad S \rightarrow a S b
$$

Note that G is a context-free language since each left side is a non terminal.
10.(C) Syntactic analysis usually alternate with semantic analysis. Type checking is done during semantic Analysis.Semantic Analysis checks the actual meaning of the statement.
11.(B) common gateway interface (CGI) A standard for communication between HTTP servers and executable programs. CGI is used in creating dynamic documents.
12.(B) The event can occur in three ways (2,4 or 6) out of 6 cases; hence $\mathrm{p}=\frac{3}{6}=\frac{1}{2}$.
13.(D) An SNMP agent can send Trap messages.

Trap \rightarrow to report an event send by agent to manager.
14.(B) From the basic COCOMO estimation formula for organic software

Effort $=\mathrm{a} \times(\mathrm{kloc})^{\mathrm{b}}$
$E f f o r t=2.4 \times(36)^{1.05}=103 \mathrm{PM}$
15.(D) Threads (Light Weight-Process)- A basic unit of CPU utilization.

- It consists of:
\rightarrow Program counter: that keeps track of which instruction to execute next.
\rightarrow Register set, which hold its current working variables.
\rightarrow Stack space, which contains the execution history.
16.(C) Effort $(P M)=a .(K D S I) ~\{K D S I=K i l o ~ L O C ~\}$

$$
=2.8 \times(20)^{1.20}
$$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 18

$$
=2.8 \times 36.4112=101.95136 \mathrm{PM}
$$

17. 7

Hint: After conversion

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{ET}^{\prime} \\
& \mathrm{T} \rightarrow \mathrm{PT} \\
& \mathrm{P} \rightarrow \mathrm{t} \\
& \mathrm{E} \rightarrow \mathrm{OE}^{\prime} \\
& \mathrm{O} \rightarrow \mathrm{I}^{\prime} \\
& \mathrm{E} \rightarrow \mathrm{EC} \\
& \mathrm{C} \rightarrow \mathrm{I} \\
& \mathrm{~T} \rightarrow \mathrm{OE}^{\prime} \\
& \mathrm{T} \rightarrow \mathrm{i}
\end{aligned}
$$

$\therefore \quad$ Number of variables $=7$.

18.(C) Syntax-driven testing

- Applicable where specifications are described by a grammar.

Example software : compilers, syntactic pattern classifier
19.(B) The occurrence of interrupt is asynchronous with the execution of the program. When interrupt happen the control of execution is transferred to the interrupt handler.
20.(A) We initialize the Table_LOSSY as shown on the left. Now we consider the FDs $A B \rightarrow C D$, $\mathrm{A} \rightarrow \mathrm{E}$ in turn but since we find that there are no two rows with identical entries in the A columns, we are unable to make

any changes to the table. When we consider the $\mathrm{FD}(\mathrm{C} \rightarrow \mathrm{D})$. we find that all rows of the column C , the determinant of the FD, are identical and this allows us to change the entries in the column D to α_{D}. No further changes are possible and the final version of the table is the same as the table on the right. Finally we find no rows in the table and conclude that the decomposition is lossy.
21.(B) Multiply as $\left(m_{1} \times\left(m_{2} \times m_{3}\right)\right) \times m_{4}$

The total no of scalar multiplications
is $=q r s+p q s+p s t$

$$
\begin{aligned}
& =80 \times 20 \times 10+100 \times 80 \times 10+100 \times 10 \times 20 \\
& =16000+80000+20000 \\
& =116000
\end{aligned}
$$

22. 15
$F_{1}=A B C+A \bar{B} C D+E \bar{F}+A D$
AND input $=3+4+2+2=11$
AND gates feeding the OR gate $=1+1+1+1=4$
Total gate $=11+4=15$
23.(D) $\left[\begin{array}{cc}1-\lambda & -1 \\ 1 & 1-\lambda\end{array}\right]=0$

$$
(1-\lambda)^{2}+1=0
$$

$$
(1-\lambda)^{2}=-1
$$

$1-\lambda=i$ or $-i$

$$
\lambda=1-\mathrm{i} \text { or } 1+\mathrm{i}
$$

24.(D) Speed up factor $=\frac{\mathrm{I} \times \mathrm{CPI}_{n p} \times \mathrm{T}_{\text {np clock }}}{\mathrm{I} \times \mathrm{CPI}_{p} \times \mathrm{T}_{\text {pook }}}$

I : number of instructions
$\mathrm{CPI}_{\mathrm{np}}$: clock per instruction in non-pipeline system $=5$
CPI_{p} : clock per instruction in pipeline system $=0.20$
$T_{n p \text { clock }}$: clock duration in non pipeline system $=n$
$\mathrm{T}_{\text {p clock }}$: clock duration in pipeline system, $=\mathrm{n}$
\therefore Speed up factor $=\frac{1 \times 5 \times n}{1 \times 0.20 \times n}=25$
\therefore In case of 70% efficiency speed up factor $=25 \times \frac{70}{100}=17.5$
25.(B)
$\mathrm{a}, \lambda \rightarrow \mathrm{a} a, \mathrm{a} \rightarrow \lambda$
$L(M)=\left\{v v^{R} \quad v \in\{a, b\}^{*}\right\}$
$b, \lambda \rightarrow b b, b \rightarrow \lambda$
is accepted by non deterministic PDA

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 20

27.(B) capacity of disk $=512 \times 300 \times 20000 \times 2 \times 5$

$$
\begin{aligned}
& =30,720,000,000 \\
& =30.72 \mathrm{~GB}
\end{aligned}
$$

28.(C) The accepted words of $L(c \cdot(a \cup b)$ are c, ca, cb, cab, caa, cbb, caba, babb, cabba.

This is any string starting with c. The NDFA forc $\cdot(\mathrm{a} \cup \mathrm{b})^{*}$ is shown in the figure below

29.(B) The following SQL query is used to retrieve the shift details for employee

Ron:
select Positing_No, Day, Shift
from DUTY ALLOCATION, EMPLOYEE
where DUTY_ALLOCATION Empl_No = EMPLOYEE. EmpL_no

and $\overline{N a m e}=$ 'Ron'

Note that attributes Empl_No have been qualified, since the names of these attributes are identical.
30.(B) $(\mathrm{a}<\mathrm{b})$ and $(\mathrm{b}<\mathrm{c})$ and $(\mathrm{c}<\mathrm{d})$

Traversals:
Preorder:
and $<\mathrm{ab}<\mathrm{bc}<\mathrm{cd}$
Inorder
a < b and b c c and c < d
Postorder:
$\mathrm{ab}<\mathrm{bc}$ and cd < and
31.(B) Clearly the grammar G with the following productions will generate G :

Note that G is a context-free language since each left side is a nonterminal.
32.(C) Let the no. of stages in system $=n$

Non pipeline execution time $=\mathrm{n} \times 10$
Pipeline execution time $=(1+.35 \times 3) \times 10=20.5$
$\therefore \quad 8=\frac{\mathrm{n} \times 10}{20.5} \quad \mathrm{n}=16$
33.(C) Step 1 Using Demorgan's laws and involution, we obtain
$\mathrm{E}=\left(x y^{\prime \prime}+z^{\prime}\right)\left(\left(x^{\prime}+z\right)^{\prime}+\left(y^{\prime}+z^{\prime}\right)^{\prime}\right)=\left(x y+z^{\prime}\right)\left(x z^{\prime}+y z\right)$
E now consists only of sums and products of literals
Step 2 Using the distributive laws, we obtain
$E=x y x z^{\prime}+x y y z+x z^{\prime} z^{\prime}+y z z^{\prime}$
E, now is a sum of próducts.
Step 3 Using the commutative, idempotent laws, we obtain
$E=x y z^{\prime}+x y z+x z^{\prime}+0$
Each term inE is a fundamental product or 0 .
Step 4 The product ac' is contained in abc^{\prime}; hence by the absorption law,
Thus we may delete abc' from the sum. Also, by the identity law for 0 , we may delete 0 from the sum. Accordingly.
$E=x y z+x z^{\prime}$
E is now represented by a sum-of-products expression,
34.(D) Since for $-5 \leq x \leq-2, x+2 \leq 0$

$$
\begin{aligned}
& \Rightarrow \quad|x+2|=-(x+2) \\
& \text { and for }-2 \leq x \leq 5, x+2 \geq 0 \\
& \Rightarrow \quad|x+2|=x+2 \text {, } \\
& \int_{-5}^{5}|x+2| d x=\int_{-5}^{-2}|x+2| d x+\int_{-2}^{5}|x+2| d x \\
& =\int_{-5}^{-2}-(x+2) d x+\int_{-2}^{5}(x+2) d x=\left[-\frac{x^{2}}{2}-2 x\right]_{-5}^{-2}+\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{5} \\
& =(-2+4)-\left(-\frac{25}{2}+10\right)+\left(\frac{25}{2}+10\right)-(2-4)=29 \text {. }
\end{aligned}
$$

35.(B) $\sim(\sim P \vee q) \equiv p \Lambda \sim q$
36.(A) Maximum number of non-zero entries are $£ a+b$
37. 75\%

String

Number of page fault $=9$
so

$$
\frac{\text { page fault }}{\text { total no. of page }} \times 100 \%=\frac{9}{12} \times 100=75 \%
$$

38.(C)

Thus $x z$ is a prime implicant of E.
39.(C)

So average waiting time $=\frac{(10-1)+(1-1)+(17-2)+(5-3)}{4}=\frac{26}{4}$

$$
=6.5 \mathrm{~ms}
$$

40.(B) Floor (8.2): Round 8.2 to the next lower integer not greater than 8.2.
41.(B) Ceil (8.1): return the value rounded up to next higher integer not less than the 8.1.
42.(A) $S \rightarrow C_{b} A \mid C_{a} B$
$\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{bAA}|\mathrm{aS}| \mathrm{a}$
$C_{b} \rightarrow b$
$\mathrm{A} \rightarrow \mathrm{C}_{\mathrm{a}} \mathrm{S}\left|\mathrm{C}_{\mathrm{b}} \mathrm{D}_{1}\right| \mathrm{a}$
$B \rightarrow C_{b} S\left|C_{a} D_{2}\right| b$
$\mathrm{D}_{1} \rightarrow \mathrm{AA}$
$\mathrm{D}_{2} \rightarrow \mathrm{BB}$
$\mathrm{C}_{\mathrm{a}} \rightarrow \mathrm{a}$
$C_{b} \rightarrow b$
43.(A) Now each state can be assigned binary values. Since there are five states, therefore number of flip-flops required is 3 and 3 -bit binary numbers are to be assigned to the states.
$a=000, b=001, \quad c=010, d=010, e=011$, and $f=100$
44.(C) Let G be a graph with n vertices, then following three statements are equivalent.
I. G is tree
II. G is an acyclic graph with $(n-1)$ edges.
III. G is a connected graph with $(n-1)$ edges.
45.(B) Cayley's theorem.

The complete graph K_{n} has $\mathrm{n}^{\mathrm{n}-2}$ different spanning trees.
Spanning trees of K_{4}.
Since, here, $n=4$ so, there will be $4^{4-2}=16$ spanning trees.
46. 3
$V(G)=\epsilon-N+2$
E $=$
$=7-6+2=3$
47.(D) Knowledge about the whole network. Each router shares its knowledge about the entire network.
Routing only to neighbors. Each router periodically sends its knowledge about the network only to those routers to which it has direct links. It sends whatever knowledge it has about the whole network through all of its ports. This information is received and kept by each neighboring router and used to update that router's own information about the network.
48.(C)

As 3 packets are formed.
Number of bytes delivered correctly indicating to the destination for one application message in best case

$$
=180+20+20=240 \text { bytes. }
$$

49.(B) ignore errors, i.e. none so

$$
\begin{aligned}
\mathrm{B} & =2 \mathrm{H} \text { (Nyquist theorem) } \\
& =354.5 \mathrm{kbps}
\end{aligned}
$$

50.(D) $P(i+j) x=i+j=105$ (global value of i and j)
print $(x+10)=115$
print $(x)=105$
because static value store previous value stored at place of x.
51.(A) By dynamic and coping we take local value $P(i+j), x=i+j=105$ (global value of i and j)
print $(x+10)=115$
print $(x)=200+20$
$=220$ (due to local value)
52(A) Consider an example

Here, minimum cost 6 f edge joining X and Y is one (1), we called as e.
Here, actually two edge that join X and Y
one cost ' 10 '
and e cost ' 9
Here if we consider weighed shortest path between s and t, we find it as an edge of cost 10.

We can't consider e edge here while its cost is minimum.
53.(B)

Consider here a path with minimum congestion between A and B We follow any minimum spanning algorithm
Hence, Resultant tree is

While, a minimum path between A and B is 4
54. 20 H

L \times I, SP, 00FF
L×I, H, 0701

00	FF
01	07

$S \cup B M \Rightarrow$
55. 20 H

Accumulator content will not changed.

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 26

56.(B)

57.(B) Mortal means causing or capable of causing death while Immortal means one who is not subject to death.
58.(D) Alert means engaged in or accustomed to close observation, ie. Watchfulness.
59.(C)
C.P. $=$ Rs. $\left(\frac{100}{122.5} \times 392\right)=\operatorname{Rs}\left(\frac{1000}{1225} \times 392\right)=320$ Rs

Profit $=$ Rs. $(392-320)=$ RS. 72.
60.(B) Changing the symbols as given in the problem the above expression is
$56 \div 7+13 \times 11-15 \times 8+2 \times 7$
Solving the BODMAS rule, we get $8+143-120+14=165-120=45$
61.(B) 'Captain' is supposed to lead the battalian of 'Soldiers' int he same way as 'Leader' is supposed to lead the 'Followers'.
62.(B) Pork is meat from a domestic hog or pig. Similarly, mutton is meat from a mature domestic sheep.
63.(C) My uncle decided to take me and my sister to the market.
64.(B) The exports are more than imports in those years for which the exports to imports ratio are more than 1. For Company A, such years are 1995, 1996 and1997. Thus, during these 3 years, the exports are more than the imports for Company A.

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.
65.(B) This is a simple subtraction series. Each number is 6 less than the previous number.

Toll Free: 1800-2000-092 Phone: 0744-2429714

Mobile: 9001297111, 9829567114, 9829597114, 9001297243

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

