

VPM CLASSES
For IIT-JAM, JNU, GATE, NET, NIMCET and Other Ent rance Exams
1-C-8, Sheela Chowchary Road, Talwand, Kota(Raj.) Tel No. 0744-2429714
Web Site www.vpmclasses.com E-mail-vpmclasses@yahoo.com

Phone: 0744-2429714
Mobile: $9001297111,9829567114,9001297243$
E-Mail: vpm classes@yahoo.com /info@vpmclasses.com
Website: www.vpmclasses.com SFS, TA LWANDI, KOTA, RAJA STHA N, 324005

INTRODUCTION

In Newtonian mechanics, space and time are completely separable and the transformation connecting the space- time coordinates of a particle are the Galilean transfomations These transormations are valid as far as Newton's laws are concerned, but fail in the field of electrodynamics. Principle of relativity, when applied to the electromagnetic phenomena, asserts that the speed of light in vacuum is a constant of nature.

GALILEAN TRANSFORMATION

At any instant, the coordinates of a point or particle in space will be different in different coordinate systems. The equations which provide the relationship between the coordinates of two reference sy stems are called transformation equations.

Fig. 1 Representation of Galilean transformations

$$
\begin{equation*}
x^{\prime}=x-\mathrm{vt} ; y^{\prime}=y ; z^{\prime}=z, t^{\prime}=t \tag{1}
\end{equation*}
$$

These are referred as Galilean transformations.

$$
\begin{equation*}
x=x^{\prime}-v t^{\prime} ; y=y^{\prime} ; z=z^{\prime} ; t=t^{\prime} \tag{2}
\end{equation*}
$$

Theæ are known as inverse Galilean transformations.

$$
\begin{equation*}
L^{\prime}=\mathrm{L} \tag{3}
\end{equation*}
$$

Thusthe length or distance between two points is invariant under Galilean transformations.

$$
\begin{equation*}
u=v+u^{\prime} \tag{4}
\end{equation*}
$$

Where u and u' are the obsened velocities in S and S' frames respectively and vis the veloaty of the second frame relative to the $\mathbf{f r s t}$ frame along x-axis.

Example: (4) transforms the velocity of a particle from one frame to another is known as Galilean (or classical) law of addition of velocities.

$$
\mathrm{a}=\mathrm{a}^{\prime}
$$

Hence according to Galilean transformations, the accelerations of a particle relaive to S and S^{\prime} frames are equal.

It is to be mentioned that the Galilean transformations are based basically on two assumptions:

1. There exists a universal time t which is the same in all reference systems.
2. The distance between two points in variousinertial systems is the same.

POSTULATES OF SPECIAL THEORY OF RELATIVITY

The two fundamental postulates of the special theory of relativity are the following
(1) All the laws of physics have the same form in all inertial systems, moving with constant velocity relative to one another. This postulate is just the prindple of relativity.
(2)The speed of light is constant in vacuum in every inertial system. This postulate is an experimental fact and asserts that the sped of light does not depend on the direction of propagation in vacuum and the relaive velocity of the source and the observer. In fact, the second postulate is contained in the first because it predicts the speed of light c to be constant of nature.

LORENTZ TRANSFORMATIONS

Suppose that S andS' be the two inertial frames of reference. S' is moving along positive diection of x - axis with velocity v relative to the frame S. Let t and t ' be the times recorded in two frames For our convenience, we will assume that the origins O and O^{\prime} of the two $c o-$ ordinate systems coinde at $t=$ $\mathrm{t}^{\prime}=0$.

Fig. 2 Representation of Lorentz transformations

$$
x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2} / c^{2}}} ; \quad y^{\prime}=y, \quad z^{\prime}=z \quad ; \quad t^{\prime}=\frac{t-v x / c^{2}}{\sqrt{1-v^{2 / c^{2}}}}
$$

Theæ equations are called Lorentz transformations.

$$
1 / \sqrt{1-v^{2} / c^{2}}=1 / \sqrt{1-\beta^{2}}=\gamma, \quad \beta=\frac{v}{c}
$$

Hence the transformations are written as

$$
\begin{aligned}
& x^{\prime}=\gamma(x-v t) ; y^{\prime}=y ; z=z, t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) \\
& x=\gamma\left(x^{\prime}-v t^{\prime}\right) ; y=y^{\prime} ; z=z^{\prime}, t=\gamma\left(t^{\prime}-\frac{v x^{\prime}}{c^{2}}\right)
\end{aligned}
$$

These are known asinverse Lorentz transformations.

CONSEQUENCES OF LORENTZ TRANSFORMATIONS:

(1) Length Contraction: In order to measure the length of an dbject in motion, relative to an dbserver, the positions of the two end points must be recorded simultaneously.

$$
\begin{aligned}
& \ell_{0}=x_{2}-x_{1} \\
& \ell=x_{2}-x_{1} \\
& \ell_{0}=\gamma \ell
\end{aligned}
$$

Phone: 0744-2429714
Mobile: $9001297111,9829567114,9001297243$
E-Mail: vpmclasses@yahoo.com /inf o@vpmclasses.com Address: 1-C-8, Shee la Chowdhary Road, SFS, TA LWANDI, KOTA, RAJASTHA N, 324005

$$
\ell=\ell_{0} \sqrt{1-v^{2} / c^{2}}
$$

Fig. 3 Contraction of moving rod
As the factor $\sqrt{1-v^{2} / c^{2}}$ is smaller than unity, we have $\ell<\ell_{0}$. Thismeans that the length of the rod (ℓ), as measured by an observer relative to which the rod is in motion, is smaller than its proper lengh. Such a contradiction of length in the direction of motion relative to an observer is called Lorentz - Fitzgerald contradiction.
(2) Simultaneity: If two events occur at he same time in a frame, they are said to be simultaneous.

Fig. 4 Representation of tw oevents in two inertial frames

$$
\begin{equation*}
t_{2}{ }^{\prime}-t_{1}{ }^{\prime}=-\frac{\left(v / c^{2}\right)\left(x_{2}-x_{1}\right)}{\sqrt{1-v^{2} / c^{2}}} \tag{2}
\end{equation*}
$$

(3) Time Dilation: Let a frame S^{\prime} be moving along X - axis with velocity v relaive to S. Now, if a clock being at rest in the frame S^{\prime}, measures the time t_{1} ' and t_{2} ' of two events occuring at a fixed position x^{\prime} in this frame, then the interval of time between these events is

$$
\begin{aligned}
& \Delta \mathrm{t}^{\prime}=\mathrm{t}_{2}{ }^{\prime}-\mathrm{t}_{1}^{\prime}=\Delta \mathrm{t}_{0} \text { (say) } \\
& \Delta \mathrm{t}=\frac{\Delta \mathrm{t}_{0}}{\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}} \\
& 1 / \sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}>1, \Delta \mathrm{t}>\Delta \mathrm{t}_{0}
\end{aligned}
$$

Fig. 5 Two events occur in frames S ' at a fixed position \mathbf{x}^{\prime}

Thus time interval, measured in the frame Sis larger than the time interval in the frame S^{\prime}, in which the two events are occurring at a certain x'. This effect is called Time Dilation (lengthening of time interval). Thismeansto stationary observer the moving clockwill appear to go slow.

If $\Delta \tau$ is the decay half life of mesons of radioactive matter as measured in the frame S^{\prime} in which the particles is at rest, then

$$
\begin{equation*}
\Delta t=\frac{\Delta \tau}{\sqrt{1-v^{2} / c^{2}}} \tag{3}
\end{equation*}
$$

is the decay half life observed in a frame S in which the partides are moving with velocity v .

FOUR - VECTORS

A vectorin four dimensional Minkowski space is called a four - vector. Its components transform from one frame to another similar to Lorentz transformations.

An event in four dimensional space is represented by a world point ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$). The Lorentz transormations from S - frame to S' - frame correspond to orthogonal transformations in the four space and are represented as

$$
x_{\mu}^{\prime}=\sum_{v=1}^{4} a_{\mu v} x_{v} \text { or }\left(\begin{array}{l}
x_{1}^{\prime} \\
x^{\prime} \\
x_{2}^{\prime} \\
x_{3}{ }_{4}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & i \beta \gamma \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-i \beta \gamma & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

With the condition

$$
\sum_{\mu=1}^{4} X_{\mu}^{\prime 2}=\sum_{\mu=1}^{4} X_{\mu}^{2}
$$

We may represent the position vector of a world point by

$$
x_{\mu}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(r, i c t)
$$

(1) Position four - vector x_{μ} - It is expressed as

$$
x_{\mu}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\mathbf{r}, \mathrm{ict})
$$

(2) Four - velocity or velocity four - vector \mathbf{u}_{μ} - The components of the velocity four - vector u_{μ} are defined as:

$$
\begin{aligned}
& u_{1}=\frac{\mathrm{dx}_{1}}{\mathrm{~d} \tau}=\frac{\mathrm{dx}}{\mathrm{dt}} \frac{\mathrm{dt}}{\mathrm{~d} \tau}=\frac{\mathrm{dx}}{\mathrm{dt}} \frac{1}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}=\frac{\mathrm{u}_{\mathrm{x}}}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}} \\
& \mathrm{u}_{2}=\frac{\mathrm{dx}}{\mathrm{~d} \tau}=\frac{\mathrm{dx}}{\mathrm{dt}} \frac{\mathrm{dt}}{\mathrm{~d} \tau}=\frac{\mathrm{dy}}{\mathrm{dt}} \frac{1}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}=\frac{\mathrm{u}_{\mathrm{y}}}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}} \\
& \mathrm{u}_{3}=\frac{\mathrm{dx}}{\mathrm{~d} \tau}=\frac{\mathrm{dx}}{\mathrm{dt}} \frac{\mathrm{dt}}{\mathrm{~d} \tau}=\frac{\mathrm{dz}}{\mathrm{dt}} \frac{1}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}=\frac{\mathrm{u}_{z}}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}} \\
& \mathrm{u}_{4}=\frac{\mathrm{dx}}{\mathrm{~d} \tau}=\frac{\mathrm{d}(\text { ict })}{\mathrm{dt}} \frac{\mathrm{dt}}{\mathrm{~d} \tau}=\frac{\mathrm{ic}}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}
\end{aligned}
$$

i.e.

$$
\mathrm{u}_{\mu}=\left(\frac{\mathrm{u}}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}, \frac{\text { ic }}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}\right)
$$

Where $\mathbf{u}=\mathrm{dr} \mathbf{r} / \mathrm{dt}$ is the three dmensional velocity vector.
The square of the magnitude of the velocity four vector is given by

$$
u_{\mu} u_{\mu}=\frac{u^{2}}{1-u^{2} / c^{2}}-\frac{c^{2}}{1-u^{2} / c^{2}}=-c^{2}
$$

Thisis Lorentz invariant.
(3) Momentum four vector p_{μ} : The components offour-momentum p_{μ} are defined by

$$
\begin{aligned}
& p_{1}=m_{0} u_{1}=\frac{m_{0} u_{x}}{\sqrt{1-u^{2} / c^{2}}}=m u_{x}=p_{x} \\
& p_{2}=m_{0} u_{2}=\frac{m_{0} u_{y}}{\sqrt{1-u^{2} / c^{2}}}=m u_{y}=p_{y} \\
& p_{3}=m_{0} u_{3}=\frac{m_{0} u_{z}}{\sqrt{1-u^{2} / c^{2}}}=m u_{z}=p_{z} \\
& p_{4}=m_{0} u_{4}=\frac{m_{0} i c}{\sqrt{1-u^{2} / c^{2}}}=i m c=i \frac{E}{c} \\
& p_{\mu}=\left(p_{1}, p_{2} p_{3}, p_{4}\right)=\left(p_{x}, p_{y}, p_{z}, i m c\right)=(\mathbf{p}, i E / c) \text { with } \mathbf{p}=m u
\end{aligned}
$$

The square of the magnitude of the four - momentum is given by

$$
p_{\mu} p_{\mu}=P^{2}-\frac{E^{2}}{c^{2}}=-\left(E^{2}-p^{2} c^{2}\right) / c^{2} \text { or } p_{\mu} p_{\mu}=-m_{0}^{2} c^{2}
$$

Thisp ${ }_{\mu}$ is also called energy-momentum four - vector

MASS- ENERGY RELATION:

(Equation of Energy in Relativistic Mechanics)

Force is defined as rate of change of linear momentum,

$$
\text { i.e. } \quad F=\frac{d}{d t}(m v)
$$

According to the definition of kinetic energy, we know that kinetic energy of a moving body is equal to work done by the force that imparts the velocity to the body from rest, therefore .we have kinetic energy,

$$
\begin{aligned}
\mathrm{T} & =\int_{\mathrm{v}=0}^{\mathrm{v}=0} \mathrm{Fds}=\int_{0}^{\mathrm{v}} \frac{\mathrm{~d}}{\mathrm{dt}}(\mathrm{mv}) \mathrm{ds} \\
& =\int_{0}^{\mathrm{v}} \mathrm{~d}(\mathrm{mv}) \frac{\mathrm{ds}}{\mathrm{dt}} \quad \quad\left(\text { Since } \frac{\mathrm{ds}}{\mathrm{dt}}=\mathrm{v}\right) \\
& =\int_{0}^{v} v d(\mathrm{mv})
\end{aligned}
$$

According to theory of relativity

Kinetic energy

By solving

$$
=\left(m-m_{0}\right) c^{2} .
$$

Kineic energy,

$$
\begin{equation*}
\mathrm{T}=\left(\mathrm{m}-\mathrm{m}_{0}\right) \mathrm{c}^{2} . \tag{1}
\end{equation*}
$$

Thisis kinetic energy equation, in relativ istic mechanics.
For low velodities this reduces to ordinary expression for kinetic energy, i.e.,

$$
T=\frac{1}{2} m_{0} v^{2} \text { for } v \ll c
$$

Equation (1) represents that the kinetic energy of a moving body is equal to gain in mass due to its motion times c^{2}. This suggests that the increase in energy may be considered as the actual case of the increase in mass Then we may suppose that the rest mass m_{0} is due to the presence of an internal store of energy of a moving body is given by.

$$
\begin{aligned}
E & =\text { knetic energy }+ \text { rest energy } \\
& =\left(m-m_{0}\right) c^{2}+m_{0} c^{2}
\end{aligned}
$$

Or $\quad E=m c^{2}$

This is Einstein's famous mass - energy relation and states a universal equivalence between mass and energy.

POINTS TO REMEMBER

1. Galiean Transformation

At any instant, the coordinates of a point or particle in space will be different in different coordinate systems. The equations which provide the relationship between the coordinates of two reference sy stems are called transformation equation.

$$
x^{\prime}=x-v t, \quad y^{\prime}=y, z^{\prime}=z, t^{\prime}=t
$$

Thes are Galilean Transformation.
2. Postulates of special theory of relativity
(i) All the laws of physics have the same fom in all inertial systems, moving with constant velocity relative to one another
(ii) The speed of light is constant in vacuum in every inertial system.
3. Lorentz transformation

$$
x^{\prime}=\frac{x-v t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$y^{\prime}=y$
$z^{\prime}=z$

$$
t^{\prime}=\frac{v-\frac{x}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

(i) Length contraction (Lorentz - Fitzgerald contraction)

$$
\ell=\ell_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

Where $\ell_{0} \rightarrow$ proper length
(ii) Simultaneity: If two events occur at the same time in a frame, they are said to be simultaneous.

$$
t_{2}^{\prime}-t_{1}^{\prime}=-\frac{\left(\frac{v}{c^{2}}\right)\left(x_{2}-x_{1}\right)}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

(iii) Time Dilation:

Where $\Delta \mathrm{t}_{0} \rightarrow$ proper ime interval.

4. Four Vectors

(i) Position four vector $\left(x_{\mu}\right) \cdot x_{\mu}=(r$, ict $)$
(ii) Velocity four-vector $\left(\mathrm{u}_{\mu}\right)$

$$
u_{\mu}=\left(\frac{u}{\sqrt{1-\frac{u^{2}}{c^{2}}}}: \frac{i c}{\sqrt{1-\frac{u^{2}}{c^{2}}}}\right)
$$

(iii) Momentum four vector $\left(p_{\mu}\right)$

$$
\mathrm{p}_{\mathrm{H}}=\left(\mathrm{p}, \frac{\mathrm{iE}}{\mathrm{c}}\right)
$$

5. Mass-Energy relation

Kineic energy $\quad T=\left(m-m_{0}\right) c^{2}$
Total energy $\quad E=$ K.E. + rest mass energy

$$
=\left(m-m_{0}\right) c^{2}+m_{0} c^{2}
$$

$$
=\mathrm{mc}^{2}
$$

Thisis Einstein's famous mass energy relationship.
6. Relativ istic relation betw een momentum and energy is

$$
E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}
$$

SOME PROBLEMS

1. A particle has a velocity $6 \times 10^{7} \mathrm{~m} / \mathrm{sec}$ in the $X-Y$ plane at angle of 60° with X-axisin the system S . What is the velocity in the system S^{\prime}. When S^{\prime} has a velocity $3 \times 10^{7} \mathrm{~m} / \mathrm{sec}$ along the positive X-axis.
(1) $5.2 \times 10^{7} \hat{\mathrm{i}}$
(2) $5.2 \times 10^{7} \hat{j}$
(3) $5.2 \times 10^{7} \mathrm{k}$
(4) $6.2 \times 10^{7} \hat{i}$

2 When an observer moves so fast that the lengths that he measures are reduced to half, his time interval measurements.
(1) Be invariant
(2) Reduced to half
(3) Becomestwice
(4) Reduced to $\frac{1}{4}$ th
3. Rest mass energy of an eledron is 0.51 MeV . A moving electron has a kinetic energy of 9.69 MeV .

The ratio of the mass of the moving electron to its mass is
(1) $19: 1$
(2) $20: 1$
(3) $1: 19$
(4) $1: 20$
4. A rapidly moving sphere will be observed as
(1) Contracted longitudinally as ellipsoid
(2) Merely rotated, but the same size
(3) un-rotated and of the same size.
(4) None of hese
5. A particle of rest mass m_{0} moving with a speed of 6 c collides and sticks to a similar particle initially at rest. What are the rest massand velocity of the composite particle?
(1) $2.12 \mathrm{~m}_{0} 1.333 \mathrm{c}$
(2) $4.12 \mathrm{~m}_{0} .333 \mathrm{c}$
(3) $4.12 \mathrm{~m}_{0}, 1.333 \mathrm{c}$
(4) $2.12 \mathrm{~m}_{0} .333 \mathrm{c}$

ANSWER KEY 1. (2), 2. (3), 3. (2), 4. (1), 5. (4)

1. (2) The x and y components of the Velodty in S'; frame are given by

$$
u_{x}^{\prime}=\frac{u_{x}-v}{1-u_{x} v / c^{2}}, u_{y}^{\prime}=\frac{u_{y} \sqrt{1-v^{2} / c^{2}}}{\left(1-u_{x} v / c^{2}\right)}
$$

Here, $u_{x}=6 \times 10^{7} \cos 60^{\circ}=3 \times 10^{7} \mathrm{~m} / \mathrm{sec}, 6 \times 10^{7} \sin 60^{\circ}=3 \sqrt{3} \times 10^{7} \mathrm{~m} / \mathrm{sec}$ and $v=3 \times 10^{7} \mathrm{~m} / \mathrm{sec}$
Therefore

$$
u_{x}^{\prime}=\frac{3 \times 10^{7}-3 \times 10^{7}}{1-\frac{3 \times 10^{7} \times 3 \times 10^{7}}{\left(3 \times 10^{8}\right)}}=0
$$

Also, $\quad u_{y}=\sqrt{1-\left[\frac{3 \times 10^{7}}{3 \times 10^{8}}\right]^{2}}$

$$
=\sqrt{\frac{99}{100}} \times \frac{3 \sqrt{3} \times 10^{7} \times 100}{99}=\sqrt{\frac{3}{11}} \times 10^{8}=5.2 \times 10^{7} \mathrm{~m} / \mathrm{sec}
$$

Hence the velocity in S' frame is

$$
\mathbf{u}^{\prime}=0+\hat{\mathbf{i}}+5.2 \times 10^{7} \hat{\mathbf{J}} \quad \text { or } \quad \mathbf{u}^{\prime}=5.2 \times 10^{7} \hat{\mathbf{J}}
$$

This means that the particle will appear to an observer in S^{\prime} to be moving along the Y - axis with velocity $5.2 \times 10^{7} \mathrm{~m} / \mathrm{sec}$.
2. (3) In Lorentz transformation, by Length Contraction method the observed length is

$$
\begin{equation*}
\mathrm{L}=\mathrm{L}_{\mathrm{o}} \sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}} \tag{1}
\end{equation*}
$$

$L_{0} \rightarrow$ proper length
According to question

$$
L=\frac{L_{0}}{2}
$$

So, from eq (1) $\frac{L_{0}}{2}=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}$

$$
\begin{equation*}
\sqrt{1-\frac{v^{2}}{c^{2}}}=\frac{1}{2} \tag{2}
\end{equation*}
$$

By time dilation method the observedtime interval is $\tau=\frac{\tau_{0}}{\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}}$
$\tau_{0} \rightarrow$ Propertime interval from eq. (2) \& (3)

$$
\tau=2 \tau_{0}
$$

So, observed time interval becomes twice.
3. (2) Given rest mass energy $E_{R}=m_{0} c^{2}=0.51 \mathrm{Mev}$

And kinetic energy T = 9.69 Mev.
We know from Einstein Theory

$$
\begin{aligned}
& E=m c^{2}=K . E .+ \text { rest mass energy } \\
& m c^{2}=T+m_{0} c^{2} \\
& \frac{m c^{2}}{m_{0} c^{2}}=\frac{T}{m_{0} c^{2}}+1 \\
& \frac{m}{m_{0}}=1+\frac{T}{m_{0} c^{2}}=1+\frac{9.69}{0.51} \\
& \frac{m}{m_{0}}=1+19=20 \\
& m: m_{0}=20: 1
\end{aligned}
$$

4. (1) The equation of sphere is $x^{2}+y^{2}=a^{2}$

We know Lorentz transformation equation

$$
\begin{aligned}
& x^{\prime}=y(x-v t) \\
& y^{\prime}=y, z=z \\
& t^{\prime}=y\left[t-\frac{v}{c^{2}} x\right]
\end{aligned}
$$

Where

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

When sphere is moving then in moving frame it's equation become as

Phone: 0744-2429714
Mobile: $9001297111,9829567114,9001297243$
Website: www.vpmclasses.com
E-Mail: vpm classes@yahoo.com /inf o@vpmclasses.com Address: 1-C-8, Shee la Chowdhary Road, SFS, TA LWANDI, KOTA, RAJA STHA N, 324005

Page 14

$$
\begin{aligned}
& x^{\prime 2}+y^{\prime 2}=a^{2} \\
& \gamma^{2}(x-v t)^{2}+y^{2}=a^{2} \\
& \frac{(x-v t)^{2}}{\frac{a^{2}}{\gamma^{2}}}+\frac{y^{2}}{a^{2}}=1
\end{aligned}
$$

Thisis the equation of ellipsoid. Where length of semi major axis is $\frac{a}{\gamma}$ and semi minor axis is a.
5. (4) sincelaw of conservation of momentum is

$$
\begin{equation*}
\frac{M_{0} V}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{m_{0} \times .6 c}{\sqrt{1-(.6)^{-2}}}=\frac{3}{4} m_{0} c \tag{1}
\end{equation*}
$$

M_{0} is rest mass of the composite body and m_{0} is re t mass of particle and v is velodity of composite particle.

Now using mass energy equivalence

$$
\begin{align*}
& \frac{M_{0} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}=\frac{m_{0} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}+m_{0} c^{2}} \begin{aligned}
& \sqrt{1-\frac{(.6 c)^{2}}{c^{2}}}+m_{0} c^{2}=\frac{m_{0} c^{2}}{8}+m_{0} c^{2} \\
&=\frac{m_{0} c^{2}}{\sqrt{2}} m_{0} c^{2}\left[\frac{\omega}{8}+1\right] \\
&=m_{0} c^{2}\left[\frac{5}{4}+1\right] \\
& \frac{M_{0} c^{2}}{1-\frac{v^{2}}{c^{2}}}==\frac{9}{4} m_{0} c^{2}
\end{align*}
$$

$\frac{\text { equation } 1}{\text { equation } 2}$ Then

Phone: 0744-2429714
Website: www.vpmclasses.com Address: 1-C-8, Shee la Chowdhary Road, SFS, TA LWANDI, KOTA, RAJASTHA N, 324005

$$
\begin{aligned}
\frac{v}{c^{2}}=\frac{\frac{3}{4} m_{0} c}{\frac{9}{4} m_{0} c^{2}} \Rightarrow \frac{v}{c^{2}}=\frac{1}{3 c} \Rightarrow & v=\frac{c}{3} \\
v & =.333 c
\end{aligned}
$$

then using equation (2)

$$
\begin{aligned}
& \frac{M_{0} c / 3}{\sqrt{1-\frac{c^{2}}{9} \times \frac{1}{c^{2}}}}=\frac{3}{4} m_{0} \ell \\
& \frac{M_{0}}{3 \sqrt{1-\frac{1}{9}}}=\frac{3}{4} m_{0} \\
& \frac{M_{0}}{\sqrt{9-1}}=\frac{3}{4} m_{0} \\
& M_{0}=\frac{3}{4} \sqrt{8} m_{0}
\end{aligned}
$$

Phone: 0744-2429714
Website: www.vpmclasses.com
Address: 1-C-8, Shee la Chowdhary Road, SFS, TA LWANDI, KOTA, RAJASTHA N, 324005
Mobile: $9001297111,9829567114,9001297243$
E-Mail: vpm classes@yahoo.com /inf o@vpmclasses.com
Page 16

