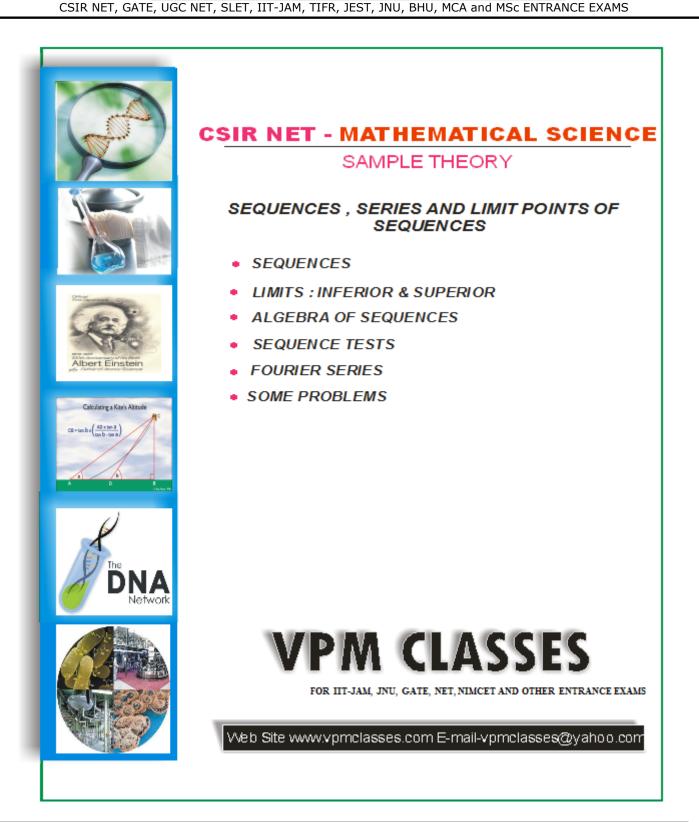


CSIR UGC NET MATHEMATICAL SCIENCE SAMPLE THEORY

- * SEQUENCES
- * LIMITS : INFERIOR & SUPERIOR
- * ALGEBRA OF SEQUENCES
- * FOURIER SERIES





. A

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

SEQUENCE

SSES

A sequence in a set S is a function whose domain is the set N of natural numbers and whose range is a subset of S. A sequence whose range is a subset of R is called a real sequence.

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

 $S_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{n}$ $S_{1} = u_{1}$ $S_{2} = u_{1} + u_{2}$ $S_{3} = u_{1} + u_{2} + u_{3}$ \dots \dots $S_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{n} \rightarrow \text{ series}$

Sequence

Bounded Sequence: A sequence is said to be bounded if and only if its range is bounded. Thus a sequence S_n is bounded if there exists

$$k \leq S_n \leq K, \forall n \in N$$

 $\Leftrightarrow \mathbf{S}_{n} \in [\mathbf{k}, \mathbf{K}]$

The I. u. b (Supremum) and the g.l.b (infimum) of the range of a bounded sequence may be referred as its g.l.b and l.u.b respectively.

Limits inferior and Superior

From the definition of limit in Section 1.4, it follows that the limiting behavior of any sequence $\{a_n\}$ of real numbers, depends only on sets of the form $\{a_n : n \ge m\}$, i.e., $\{a_m, a_{m+1}, a_{m+2}, \ldots\}$. In this regard we make the following definition.

Definition Let {a, } be a sequence of real numbers (not necessarily bounded). We define

$$\lim_{n \to \infty} \inf \{a_n = \sup \inf \{a_n, a_{n+1}, a_{n+2}, \dots \}$$

And

 $\lim_{n \to \infty} \sup a_{n} = \inf_{n} \sup \{a_{n}, a_{n+1}, a_{n+2}, \dots\}$

As the limit inferior and limit superior respectively of the sequence $\{a_n\}$.

We shall denote limit inferior and limit superior of $\{a_n\}$ by $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} a_n$ or simply by $\lim_{n\to\infty} a_n$ and

lim a, respectively.

We shall use the following notations for the sequence $\{a_n\}$, for each $n \in N$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

$\underline{A}_{n} = \inf \{ a_{n}, a_{n+1}, a_{n+2}, \dots \},\$

And

 $\overline{A}_{n} = \sup \{a_{n}, a_{n+1}, a_{n+2}, \dots \}.$

Therefore, we have

$$\underline{\lim} a_n = \sup \underline{A}_n$$

 $\overline{\lim} a_n = \inf A_n$

And

Now $\{a_{n+1}, a_{n+2}, \ldots\} \subseteq \{a_n, a_{n+1}, a_{n+2}, \ldots\}$, Therefore by taking infimum and supremum

respectively, it follows that

$$\underline{A}_{n+1} \ge \underline{A}_n \text{ And } \overline{A}_{n+1} \le \overline{A}_n$$

This is true for each $n \in \mathbf{N}$.

The above inequalities show that the associated sequences $\{\underline{A}_n\}$ and $\{\overline{A}_n\}$ monotonically increase and decrease respectively with n.

Remark: It should be noted that both limits inferior and superior exist uniquely (finite or infinite) for all real sequences.

Theorem: If $\{a_n\}$ is any sequence, then

$$\lim_{n \to \infty} (-a_n) = -\lim_{n \to \infty} a_n$$
, and $\lim_{n \to \infty} (-a_n) = -\lim_{n \to \infty} a_n$

Let $b_n = -a_n$, $n \in N$ then we have

$$\underline{B}_{n} = \inf \{ b_{n}, b_{n+1}, \dots \}$$
$$= -\sup \{ a_{n}, a_{n+1}, \dots \} = -\overline{A}_{n}$$

And so

$$\underbrace{\lim}_{n \to \infty} (-a_n) \underbrace{\lim}_{n \to \infty} = \sup \left(\underline{B}_1, \underline{B}_2, \dots \right)$$
$$= \sup \left\{ -\overline{A}_1, -\overline{A}_2, \dots \right\}$$
$$= -\inf \left\{ \overline{A}_1, \overline{A}_2, \dots \right\}$$
$$= -\inf \overline{A}_n = -\overline{\lim} a_n.$$

Also,

 $\underline{\lim a_n} = \underline{\lim} (-(a_n)) = -\overline{\lim} (-a_n).$

Theorem: If $\{a_n\}$ is any sequence, then

 $\lim_{n \to \infty} a_n = -\infty$ if and only if $\{a_n\}$ is not bounded below,

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

And $\lim_{n \to \infty} a_n = +\infty$ if and only if $\{a_n\}$ is not bounded above.

Let
$$\underline{A}_n = \inf \{a_n, a_{n+1}, \ldots\},\$$

And $\overline{A}_n = \sup \{a_n, a_{n+1}, \ldots\}, n \in \mathbb{N}$

By definition we have

 $\underline{\lim} a_n = -\infty \Leftrightarrow \sup \{\underline{A}_1, \underline{A}_2,\} = -\infty$

- $\Leftrightarrow \qquad \underline{A}_n = -\infty, \qquad \forall n \in \mathbf{N}$
- $\Leftrightarrow \qquad \inf \{a_n, a_{n+1}, \dots\} = -\infty, \ \forall \ n \in \mathbf{N}$
- \Leftrightarrow {a_n} is not bounded below:

The proof for limit superior is similar.

Corollary: If $\{a_n\}$ is any sequence, then

(i) $-\infty < \lim_{n \to \infty} a_n \le +\infty$ iff $\{a_n\}$ is bounded below.

and

(ii) $-\infty \leq \lim_{n \to \infty} a_n < +\infty$ iff $\{a_n\}$ is bounded above.

For bounded sequences, we have the following useful criteria for limits inferior and superior respectively.

Limit pts of a sequence.

A number ξ is said to be a limit point of a sequence S_n if given any nbd of ξ , S_n belongs to the same for an infinite number of values of n.

Now $\{S_{n+1}, S_{n+2}, S_{n+3}, ...\} \subseteq \{S_n, S_{n+1}, S_{n+2}, ...\}$, therefore by taking infimum and supremum respectively,

if follows that $A_{n+1} \ge A_n$ and $\overline{A_{n+1}} \le \overline{A_n}$ for each $n \in N$

Remark: Both limits inferior and superior exist uniquely (finite or infinite) for all real sequence.

Theorem: If $\{S_n\}$ is any sequence, then

inf $S_n \leq \underline{\lim} S_n \leq \sup S_n$

If $\{S_n\}$ is any sequence, then

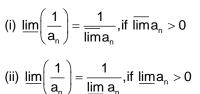
$$\underline{\lim}\{-S_n\} = -\overline{\lim}S_n$$

And $-\overline{\lim} \{-S_n\} = \overline{\lim} S_n$

Some Important Properties of Algebra of sequences

1. If $\{a_n\}$ is a bounded sequence such that $a_n > 0$ for all $n \in N$, then

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>



$$(a_n)$$
 lim

5. If $\{a_n\}$ and $\{b_n\}$ are bounded sequence, $a_n \ge 0, b_n > 0$ for all $n \in N$, then

(i)
$$\underline{\lim}\left(\frac{\mathbf{a}_{n}}{\mathbf{b}_{n}}\right) \ge \frac{\underline{\lim} \mathbf{a}_{n}}{\overline{\lim} \mathbf{b}_{n}}$$
, if $\overline{\lim} \mathbf{b}_{n} > 0$
(ii) $\overline{\lim}\left(\frac{\mathbf{a}_{n}}{\mathbf{b}_{n}}\right) \le \frac{\overline{\lim} \mathbf{a}_{n}}{\underline{\lim} \mathbf{b}_{n}}$, if $\underline{\lim} \mathbf{b}_{n} > 0$

SOME IMPORTANT SEQUENCE TESTS

1. Cauchy's root test

Let Σu_n be +ve term series and

$$\lim_{n \to \infty} \left\{ u_n \right\}^{u_n} = \ell$$

Then the series is

(i) Cgt if $\ell < 1$

(ii) Dgt if $\ell > 1$

(iii) No firm decision is possible if $\ell = 1$

2. Raabe's test

Let Σu_n be a +ve term series and

 $\lim \left\{\frac{u_n}{u_{n+1}} - 1\right\} = 0$

then the series is

(i) Cgt if $\ell > 1$

(ii) Dgt if *ℓ* < 1

(iii) No firm decision is possible if $\ell = 1$

3. Logarithmic Test:

If Σu_n is +ve terms series such that

$$\lim_{n \to \infty} \left(n \log \frac{u_n}{u_{n+1}} \right) = \ell$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Then the series

(i) cgt if $\ell > 1$

(ii) dgt if $\ell < 1$

4. Absolute convergent

A series Σu_n is said to be absolutely cgt if the positive term series $\Sigma |u_n|$ formed by the moduli of the

terms of the series is convergent.

5. Conditional convergent

A series is said to be conditionally convergent if it is convergent without being absolutely convergent.

Theorem: Every absolute convergent series is convergent.

Note. (i) If Σu_n is cgt without being absolutely cgt. I.e. if Σu_n is conditionally cgt then each of the +ve

term series $\Sigma g(n)$ and $\Sigma h(n)$ diverges to infinity which follows from

$$g(n) = \frac{1}{2} \left[\left| u_n \right| + u_n \right]$$
$$h(n) = \frac{1}{2} \left[\left| u_n \right| - u_n \right]$$

(ii) It should be noted that three are no comparison tests for the cgt of conditionally cgt series.

Alternating series

A series whose terms are alternately +ve and -ve is called an alternating series

6. Leibnitz's test

Let u be a sequence such that $\ \forall \, n \in N$

(i) $u_n \ge 0$

(ii) u_{n+1} ≤u_n

(iii) lim u = 0

Then alternating series $u(1) - u(2) + u(3) - u(4) + \dots + (-1)^{n+1} u(n) \dots$ is cgt.

7. Abel's Test

If a_n is a positive, monotonic decreasing function and if Σu_n is convergent series, then the series Σu_n

a_n is also convergent.

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

Uniform convergence

Point wise Convergence of Sequence of Functions

Definition: A sequence of functions $\{f_n\}$ defined on [a, b] is said to be point-wise convergent to a function f on [a, b], if

to each \in > 0 to each x \in [a, b], there exists a positive integer m (depending on ϵ and the point x) such that

 $|f_n(x) - f(x)| < \varepsilon \ \forall \ n > m \ and \ \forall \ x \in [a,b].$

The function f is called the point-wise limit of the sequence $\{f_n\}$. We write $\lim f_n(x) = f(x)$.

FOURIER SERIES

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\alpha} a_n \cos nx + \sum_{n=1}^{n} b_n \sin nx$$

Where
$$(0 < x < 2\pi)$$

$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx$$
$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cosh dx$$

And
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin x \, dx$$

And for $(-\pi < x < \pi)$

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cosh dx$$
$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cosh dx$$

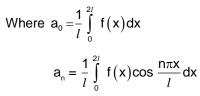
And $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sinh dx$

Where f(x) is an odd function; $a_0 = 0$ and $a_n = 0$ where f(x) is an even function; $b_n = 0$.

Fourier series in the interval $(0 < x < 2\ell)$ is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>



And
$$b_n = \frac{1}{l} \int_{0}^{2l} f(x) \sin \frac{n\pi x}{l} dx$$

In the interval $(-\ell < x < \ell)$

$$a_{0} = \frac{1}{l} \int_{-l}^{+l} f(x) dx, a_{n} = \frac{1}{l} \int_{-l}^{+l} f(x) \cos \frac{n\pi x}{l} dx$$

And
$$b_n = \frac{1}{l} \int_{-l}^{+l} f(x) \sin \frac{n\pi x}{l} dx$$

Note: When f(x) is an odd function, $a_0 = 0$ and $a_n = 0$ when f(x) is an even function, $b_n = 0$.

Half-Range series ($0 < x < \pi$)

A function f(x) defined in the interval $0 < x < \pi$ has two distinct half-range series.

(i) The half-range cosine series is

$$f(x) = \frac{a_0}{2} + \sum a_n \cos nx$$

Where
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$$
 and $a_n = \int_0^{\pi} f(x) \cos nx dx$

(ii) The half range sine series is,

$$f(x) = \Sigma b_n \sin nx$$

Where
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx.$$

Half-Range Series (0 < x < l)

A function f (x) defined in the interval (0 < x < l) and having two distinct half-range series. (i) The half range cosine series is,

$$f(x) = \frac{a_0}{2} + \Sigma a_n \cos \frac{n\pi x}{l}$$
Where $a_0 = \frac{2}{l} \int_0^l f(x) dx$
And $a_n = \frac{2}{l} \int_0^l f(x) \frac{\cos n\pi x}{l} dx$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u> Mobile: 9001297111, 9829567114 E-Mail: <u>info@vpmclasses.com</u>

Page 8

(ii) The half-range sine series is,

$$f(x) = \Sigma b_n \sin \frac{n\pi x}{l}$$

Where
$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx$$

Complex form of Fourier Series

$$f(x) = \sum_{m=-\infty}^{+\infty} c_m e^{imx}$$
Where $c_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-imx} dx$
 $c_0 = \int_{-\pi}^{+\pi} f(x) dx$ and
 $C_{-m} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} f(x) e^{imx} dx.$

Parseval's Identity

For Fourier series,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}, 0 < x < 2l$$

The Parseval's identity is

$$\frac{1}{2l} \int_{0}^{2l} \left[f(x) \right]^{2} dx = \frac{a_{0}^{2}}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \left(a_{n}^{2} + b_{n}^{2} \right)$$

FOURIER INTEGRAL

The Fourier series of periodic function f (x) on the interval $(-\ell, +\ell)$ is given by

Where

$$f(x) = a_{0} + \frac{n\pi x}{\ell} \cos \frac{n\pi x}{\ell} + \sum_{n=1}^{\infty} b_{n} \sin \frac{n\pi x}{\ell} \qquad \dots \dots (1)$$

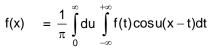
$$a_{0} = \frac{1}{2\ell} \int_{-\ell}^{+\ell} f(x) dx = \frac{1}{2\ell} \int_{-\ell}^{+\ell} f(t) dt$$

$$a_{n} = \frac{1}{\ell} \int_{-\ell}^{+\ell} f(t) \cos \frac{n\pi t}{\ell} dt$$

$$b_{n} = \frac{1}{\ell} \int_{-\ell}^{+\ell} f(t) \sin \frac{n\pi t}{\ell} dt$$

Then

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>



This is a form of Fourier Integral.

SOME PROBLEMS

- **1.** The set of all positive values of a for which the series $\sum_{n=1}^{\infty} \left(\frac{1}{n} \tan^{-1}\left(\frac{1}{n}\right)\right)^n$ converges, is
 - (1) $\left(0,\frac{1}{3}\right)$ (2) $\left(0,\frac{1}{3}\right)$ (3) $\left(\frac{1}{3},\infty\right)$
- 2. Match the following Series (X)

Domain of convergence (Y)

(iv) [-1, 1

С

D

(i)

(ii)

(ii)

(iii)

- A. $\sum \frac{x^n}{n^3}$ (i) [0, 2]
- B. $\sum (-1)^n \frac{x^{2n+1}}{2n+1}$ (ii) [-2-e, -2+e]
- C. $\sum \frac{(-1)^{n+1}}{n} (x-1)^n$ (iii) [-1, 1]

D.
$$\sum \frac{\Pi(x+2)}{n^n}$$

(1) (iii) (ii) (iv) (2) (iv) (iii) (i) (3) (iii) (iv) (i) (4) (ii) (iv) (i)

3. The series

$$1^{p} + \left(\frac{1}{2}\right)^{p} + \left(\frac{1.3}{2.4}\right)^{p} + \left(\frac{1.3.5}{2.4.6}\right)^{p} + \dots \text{ is } -$$

- (1) Convergent, if $p \ge 2$ divergent, if p < 2
- (2) Convergent, if p>2 and divergent, if $p\leq 2$
- (3) Convergent, if $p\leq 2$ and divergent, if p>2

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u> Mobile: 9001297111, 9829567114 E-Mail: <u>info@vpmclasses.com</u>

 $\left(\frac{1}{3},\infty\right)$

VPM CLASSES

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

(4) Convergent, if p < 2 and divergent, if $p \geq 2$

4. For the improper integral
$$\int_{0}^{1} x^{\alpha-1} e^{-x} dx$$
 which one of the following is true

(1) if α < 0, convergent and if α = 0, divergent

(2) if $\alpha \ge 0$, Convergent and if $\alpha < 0$, divergent

(3) if α > 0, convergent and if $\alpha \leq$ 0, divergent

(4) If $\alpha > 0$, divergent and if $\alpha \leq 0$, convergent

5. Let $A \subseteq R$ and Let $f_1 f_2 - f_n$ be functions on A to R and Let c be a cluster point of A if $L_k = \lim_{k \to \infty} f_k$ for $k = \lim_{k \to \infty} f_k$ for

1,, n Then $\lim_{x\to c} [f(x)]^c$

(1) L (2) $L_k k \in N$

(3) Lⁿ

(4)

ANSWER KEY: - 1. (4), 2. (2), 3. (2), 4. (3), 5. (3)

1. (4) Use the following results:

(1) Let $\Sigma a_n \& \Sigma b_n$ be two positive term series

- (i) If $\underset{n \to \infty}{\text{Lt}} \frac{a_n}{b_n} = \ell$, ℓ being a finite non-zero constant, then $\Sigma a_n \& \Sigma b_n$ both converge or diverge together.
- (ii) If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0 \& \Sigma \beta v \chi ov \varpi \epsilon \rho \gamma \epsilon \sigma$, then Σa_n also converges.

(2) The series $\sum \frac{1}{n^p}$ converges if p > 1 & diverges if p ≤ 1. We compare the given series with the

series
$$\sum \frac{1}{n^{ap}}$$

$$\lim_{n \to \infty} \frac{\left(\frac{1}{n} - \tan^{-1} \frac{1}{n}\right)^{a}}{\frac{1}{n^{ap}}} = \lim_{n \to \infty} \frac{\left(\frac{1}{3n^{3}} - \frac{1}{5n^{5}} \dots \right)^{a}}{\frac{1}{n^{pa}}} \left[\because \frac{1}{n} - \tan^{-1} \left(\frac{1}{n}\right) = \frac{1}{n} - \left[\frac{1}{n} - \frac{1}{3n^{3}} + \dots \right] \right]$$

$$= \frac{1}{3n^{3}} - \frac{1}{5n^{5}} + \dots$$

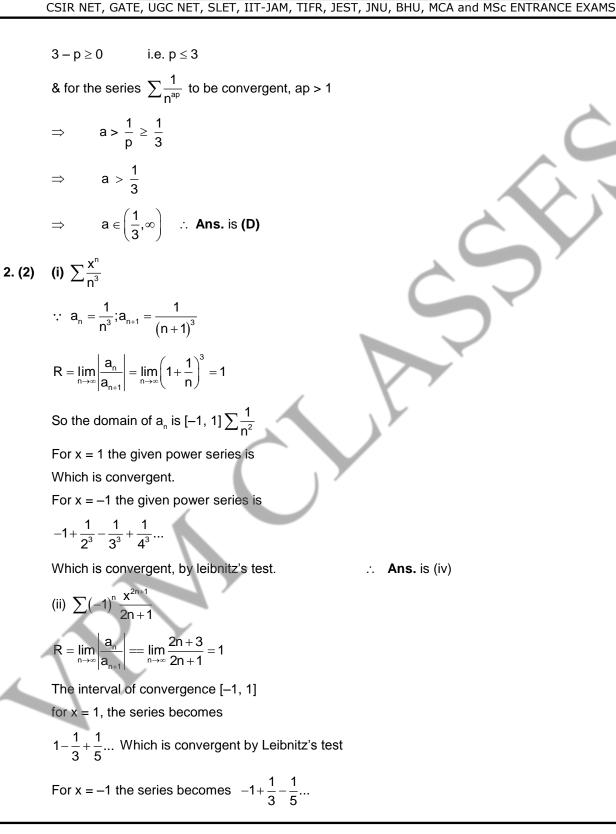
$$= \lim_{n \to \infty} \left(\frac{n^{p}}{3n^{3}} - \frac{n^{p}}{5n^{5}} - \dots \right)^{a}$$

For this limit to be zero or some other finite number

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Mobile: 9001297111, 9829567114 E-Mail: <u>info@vpmclasses.com</u>

Page 11



WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

Which is again convergent.

Hence the exact interval of convergency is [-1, 1]. ... Ans. is (iii)

(iii)
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{n}{n-1} \right| = 1$$

Since the given power series is about the point x = 1 the interval of convergence is

-1 + 1 < x < 1 + 1 = 0 < x < 2

for x = +2, the given series $\sum \frac{(-1)^{n+1}}{n}$ which is convergent by leibnitz's test.

Hence the exact interval of convergence is [0, 2].

(iv)
$$\sum \frac{n!(x+2)^n}{n^n}$$

The given power series is about the point x = 2

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{n!}{n^n} \cdot \frac{(n+1)^{n+1}}{(n+1)!}$$
$$= \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Ans. is (ii)

∴ **Ans.** is (i)

The interval of convergence is [-2 -e, -2+ e],

3. (2) Neglecting the first term

$$u_{n} = \left(\frac{1.3.5....(2n-1)}{2.4.6....2n}\right)^{p}$$

and $u_{n+1} = \left(\frac{1.3.5....(2n-1)(2n+1)}{2.4.6....(2n)(2n+2)}\right)^{p}$
$$\therefore \qquad \frac{u_{n}}{u_{n+1}} = \left(\frac{2n+2}{2n+1}\right)^{p} = \frac{\left(1+\frac{1}{n}\right)^{p}}{\left(1+\frac{1}{2n}\right)^{p}}$$

or, $\lim_{n\to\infty} \frac{u_{n}}{u_{n+1}} = \lim_{n\to\infty} \frac{\left(1+\frac{1}{n}\right)^{p}}{\left(1+\frac{1}{2n}\right)^{p}} = 1$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

CSIR NET, GATE, UGC NET, SLET, IIT-JAM, TIFR, JEST, JNU, BHU, MCA and MSc ENTRANCE EXAMS

∴ Ratio test fails.

1

$$\therefore \log \frac{u_n}{u_{n+1}} = \log \left\{ \frac{\left(1 + \frac{1}{n}\right)^p}{\left(1 + \frac{1}{2n}\right)^p} \right\}$$
$$= p \log \left(1 + \frac{1}{n}\right) - p \log \left(1 + \frac{1}{2n}\right)$$
$$= p \left[\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} - \dots\right) - \left(\frac{1}{2n} - \frac{1}{8n^2} + \frac{1}{24n^3}\right) \right]$$
$$= p \left[\left(\frac{1}{n} - \frac{1}{2n^2}\right) - \left(\frac{1}{2n} - \frac{1}{8n^2}\right) + \left(\frac{1}{3n^3} - \frac{1}{24n^3}\right) + \dots \right]$$
$$= p \left[\frac{1}{2n} - \frac{3}{8n^2} + \frac{7}{24n^3} + \dots \right]$$

 $\therefore \lim_{n \to \infty} n \log \frac{u_n}{u_{n+1}}$

$$= \lim_{n \to \infty} p \left(\frac{1}{2} - \frac{3}{8n} + \frac{7}{24n^2} + \right)$$

$$= \frac{p}{2}$$

From Logarithmic test.

The series is convergent, if $\frac{1}{2}$ p > 1, i.e., p > 2

The series is divergent, if $\frac{1}{2}$ p < 1, i.e., p < 2

The test fails, if
$$\frac{1}{2}p = 1$$
 i.e., $p = 2$
Now $n \log \frac{u_n}{u_{n+1}} = 2 \left(\frac{1}{2} - \frac{3}{8n} + \frac{7}{24n^2} + \dots\right)$
or, $\left\{ n \log \frac{u_n}{u_{n+1}} - 1 \right\}$

$$= \left\{ \left(1 - \frac{3}{4n} + \frac{7}{12n^2} + \dots \right) - 1 \right\}$$

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>

$$= -\frac{3}{4n} + \frac{7}{12n^2} + \dots$$

or, $\left\{ n \log \frac{u_n}{u_{n+1}} - 1 \right\} \log n$
$$= -\frac{3}{4} \times \frac{\log n}{n} + \frac{7}{12} \times \frac{\log n}{n^2} + \dots$$

or, $\lim_{n \to \infty} \left(-\frac{3}{4} \times \frac{\log n}{n} + \frac{7}{12} \times \frac{\log n}{n^2} \dots \right)$

Hence by higher logarithmic test the given series is divergent, if p = 2. Hence the given series is convergent when p > 2 and divergent when $p \le 2$. The correct answer is (2).

4. (3) $\int_0^1 x^{\alpha-1} e^{-x} dx$,

When $\alpha > 1$, the given integral is a proper integral and hence it is convergent. When $\alpha < 1$, the integrand becomes infinite at x = 0.

Now
$$\lim_{x \to 0} x^{\mu} \cdot x^{\alpha - 1} e^{-x} = \lim_{x \to 0} x^{\mu + \alpha - 1} e^{-x} = 1$$

if
$$\mu + \alpha - 1 = 0$$
, i.e., $\mu = 1 - \alpha$

We then have 0 < μ < 1 when 0 < α < 1

and $\mu \ge 1$ where $\alpha \le 0$.

It follows by μ -test that the integral is convergent when $0 < \alpha < 1$ and divergent when $\alpha \leq 0$.

And we have proved above that the integral is convergent when $\alpha \ge 1$. Consequently the given integral is convergent if $\alpha > 0$ and divergent if $\alpha \le 0$.

5. (3) if
$$L_k = \lim_{k \to \infty} f_k$$

then it follows from a by known result which is called an Induction arument that

$$L_1 + L_2 + \dots + L_n = \lim_{x \to c} f(_1 + f_2 + \dots + f_n),$$

and

$$\mathbf{L}_{1} \cdot \mathbf{L}_{2} \cdots \mathbf{L}_{n} = \lim(\mathbf{f}_{1} \cdot \mathbf{f}_{2} \cdots \mathbf{f}_{n}).$$

In particular, we deduce that if L = $\lim_{n \to \infty} f$ and $n \in N$, then

$$L^n = \lim_{x \to c} (f(x))^n$$
.

WhatsApp: 9001894070 Website: <u>www.vpmclasses.com</u>